洪祥恩,2011,以地面及空載光達點雲重建複雜建物三維模型,碩士論文,國立中央大學土木工程學系。孫敏,2007,多視幾何與傳統攝影測量理論,北京大學學報(自然科學版),第四十三卷,第四期,頁453-459。
陳思翰,2011,未校正影像三維模型建構與定位精度之研究,碩士論文,國立台北大學不動產與城鄉環境學系。張桓、蔡富安,2014,單視角影像滅點偵測與三維建物模型重建,航測及遙測學刊,第十八卷,第四期,頁 217-233。張萌,2013,基於建築物三維點雲數據的水平面檢測,碩士論文,西安電子科技大學通信與信息系統學系。
黃金聰、陳思翰,2013,利用多重影像產生之點雲的精度評估,台灣土地研究,第十六卷,第一期,頁 81-101。
趙煇,2006,SIFT特徵匹配技術講義,山東大學信息學院。
Bouguet, J. Y., 2013. Camera Calibration Toolbox for Matlab, Retrieved June 30, 2015, from http://www.vision.caltech.edu/bouguetj/calib_doc/
Besl, P. J. and McKay, N. D., 1992. A method for registration of 3-D shapes. IEEE Trans. on Pattern Analysis and Machine Intelligence, vol.14, no.2, pp.239–256.
Chow, J. and Lichti, D., 2013. Photogrammetric bundle adjustment with self-calibration of the PrimeSense 3D camera technology: Microsoft Kinect, IEEE Access, vol.1, pp. 465-474.
Fischler, M. A., Bolles, R. C., 1981. Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography, Comm. of the ACM, vol. 24, pp.381-395.
Furukawa, Y. and Ponce, J., 2010. Accurate, dense, and robust multi-view stereopsis, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 32, no. 8, pp. 1362-1376.
Han, J., Shao, L., Xu, D., and Shotton, J., 2013. Enhanced computer vision with Microsoft Kinect sensor: A review, IEEE Transactions on Cybernetics, pp.1318-1334.
Henry, P., Krainin, M., Herbst, E., Ren, X., and Fox, D., 2012. RGB-D mapping: Using Kinect-style depth cameras for dense 3D modeling of indoor environments, The International Journal of Robotics Research, vol. 31, no. 5, pp. 647-663.
Khoshelham, K. and Elberink, S., 2012. Accuracy and resolution of Kinect depth data for indoor mapping applications, Sensors, vol.12, no.1, pp.1437-1454.
Lowe, D. G., 1999. Object recognition from local scale-invariant features, International Conference on Computer Vision, Corfu, Greece, pp.1150-1157.
Mankoff, K. D., & Russo, T. A. 2013. The Kinect: A low‐cost, high‐resolution, short‐range 3D camera, Earth Surface Processes and Landforms, vol.38, no.9, pp.926-936.
Newcombe, R. A., Izadi, S., Hilliges, O., Molyneaux, D., Kim, D., Davison, A. J., Kohli, P., Shotton, J., Hodges, S., and Fitzgibbon, A., 2011. KinectFusion: Real-time dense surface mapping and tracking, In Mixed and augmented reality (ISMAR), 2011 10th IEEE international symposium on, pp.127-136.
Wolf, P. R., and Dewitt, B. A., 2000. Element of photogrammrtry with application in GIS, McGraw Hill press, 3rd edition.
Wu, C., 2011. VisualSFM: A Visual Structure from Motion System, Retrieved August 20, 2014, from http://ccwu.me/vsfm/
Wu, C., Agarwal, S., Curless, B., and Seitz, S. M., 2011. Multicore bundle adjustment, Computer Vision and Pattern Recognition (CVPR), 2011 IEEE Conference on, pp.3057–3064.
Wu, C., 2013. Towards linear-time incremental structure from motion, 3D Vision-3DV 2013, 2013 International Conference on, pp.127-134.
Wasmeier, P., 2014. Geodetic Transformation Toolbox, Retrieved June 24, 2014, from http://www.mathworks.com/matlabcentral/fileexchange/9696-geodetic-
transformations-toolbox
Zhou, K., 2010. Structure & Motion, Structure in Pattern Recognition, Vienna University of Technology, Faculty of Informatics, Institute of Computer Graphics and Algorithms, Pattern Recognition and Image Processing Group.