|
[1] T. Dean and M. Boddy, An analysis of time-dependent planning, In Proc. of the National Conference on Artificial Intelligence, pp. 49–54, 1988. [2] J. Borenstein, H. Everett, L. Feng, and D. Wehe, Mobile robot positioning: Sensors and techniques, Journal of Robotic Systems, pp. 231-249, 1997. [3] J. Borenstein and L. Feng, Measurement and correction of systematic odometry errors in mobile robots, IEEE Transactions on Robotics and Automation vol. 12 pp. 869-880, 1996. [4] M. Grewal and A. Andrews. Kalman filtering: theory and practice. New Jersey Prentice-Hall, Inc., Englewood Cliffs, 1993. [5] E. T. Boumgartner and J. D. Yoder, Enhancing mobile robot location estimates using sensor fusion, Dynamic Systems and Control Division vol. 57, 1995. [6] N. Yang, W. F. Tian, Z. H. Jin, and C. B. Zhang. Particle filter for sensor fusion in a land vehicle navigation system, Measurement Science and Technology vol. 16. Institute of Physics Publishing, 2005. [7] S. Thrun, W. Burgard and D. Fox . Probabilistic Robotics. MIT Press, 2005. [8] F. Gustafsson, F. Gunnarsson, N. Bergman and U. Forssel, Particle filters for positioning, navigation and tracking, IEEE Transactions on Signal Processing - Special Issue on Monte Carlo Methods for Statistical Signal Processing, vol. 50, no.2, pp. 425-437, 2002. [9] P. Li and V. Kadirkamanathan, Particle filtering based likelihood Ratio Approach to Fault Diagnosis in Nonlinear Stochastic Systems, IEEE Transactions on Systems, Man and Cybernetics - Part C: Applications and Reviews, vol. 31, no.3, pp. 337-343, 2001. [10] V. Kadirkamanathan, M. H. Jaward, S.G. Fabri and M. Kadirka-manathan, Particle filters for recursive model selection in linear and nonlinear system identification, Proc. 39th IEEE Conference on Decision and Control, vol. 3, pp. 2391-2396, 2000. [11] R. Karlsson and M. Norrlof, Bayesian position estimation of an industrial robot using multiple sensors, IEEE International Conference on Control Applications, Taipei, Taiwan, pp. 303-308, 2004. 102 [12] G. W. Ng. Intelligent Systems - Fusion: tracking and control. Research Studies Press Ltd ed., 2003. [13] R. Smith and P. Cheeseman, On the representation of spatial uncertainty, Journal of Robotics Research, pp. 56-68, 1987. [14] J. F. Leonard and H. Durrant-Whyte, Mobile robot localization by tracking geometric beacons, IEEE Transactions Robotics and Automations, pp. 376-382, June 1991. [15] L. Moreno, J.M. Armingol, A. de la Escalera, and M. A. Salichs, Global integration of ultrasonic sensors information in mobile robot localization, In Proceedings of the Ninth Annual Conference on Advanced Robotics, pp. 283-288, October 1999. [16] J. Z. Sasiadek and P. Hartana, Sensor data fusion using Kalman filter, In Proceedings of the Third International Conference on Information Fusion, vol. 2, pp. 19-25, 2000. [17] J. S. Guttman, W. Hatzack, I. Herrmann, B. Nebel, F. Rittinger, A. Topor, and T. Weigel, Reliable self-localization, multirobot sensor integration, accurate path-planning and basic soccer skills: playing an effective game of robotic soccer, In Proceedings of the Ninth Annual Conference on Advanced Robotics, pp. 289-296, October 1999. [18] E. Kiriy, A Localization system for autonomous golf course mowers, Thesis, Dept. of Electrical Engineering, McGill University, November 2002. [19] R. E. Kalman, A new approach to linear filtering and prediction problems, Transactions of the ASME, pp. 35-45, 1960. [20] M. Pitt and N. Shephard, Filtering via simulation: auxiliary particle filter, Journal of American Statistical Association, vol. 94, pp. 590-599, 1999. [21] A. Doucet, J. F. G. de Freitas and N. J. Gordon. Sequential Monte Carlo methods in practice. Springer, 2001. [22] S. Thrun, D. Fox, W. Burgard, and F. Dellaert, Robust Monte Carlo localization for mobile robots, Artificial Intelligence, vol. 128, pp. 99-141, 2001. [23] D. Kortenkamp, R. Bonasso and R. Murphy. AI-based Mobile Robots: Case studies of successful robot systems. MIT Press, Cambridge, 1998. [24] I. J. Cox, Blanche: Position estimation for an autonomous robot vehicle, Autonomous Mobile Robots: Control, Planning, and Architecture , IEEE Computer Society Press, vol. 2, pp. 285-292, 1991. [25] D. Fox, W. Burgard, and S. Thrun, Markov localization for mobile robots in dynamic environments, Journal of Artificial Intelligence Research 11, pp. 391-427, 1999. [26] T. Bailey, Mobile robot localisation and mapping in extensive outdoor environments, Ph.D thesis, August 2002. [27] A. Elfes, Occupancy grids: A stochastic spatial representation for active robot perception, In Sixth Conference on Uncertainty in AI, 1990. [28] A. C. Schultz and W. Adams, Continuous localization using evidence grids, International Conference on Robotics and Automation, pp. 2833–2839, 1998. [29] S.T. Pfister, K. L. Kriechbaum, S.I. Roumeliotis, and J.W. Burdick, Weighted range sensor matching algorithms for mobile robot displacement estimation, IEEE International Conference on Robotics and Automation, 2002. [30] B. Yamauchi, A. Schultz, and W. Adams, Mobile robot exploration and map-building with continuous localization, IEEE International Conference on Robotics and Automation, pp. 3715–3720, 1998. [31] K. Konolige and K. Chou, Markov localization using correlation, International Joint Conference on Articial Intelligence, pp. 1154–1159, 1999. [32] F. Dellaert, D. Fox, W. Burgard, and S. Thrun, Monte Carlo localization for mobile robots, IEEE International Conference on Robotics and Automation, pp. 1322–1328, 1999. [33] E. M. Nebot and D. Pagac, Quadtree representation and ultrasonic information for mapping an autonomous guided vehicle’s environment, International Journal of Computers and Their Applications, vol. 2, pp. 160–170, 1995. [34] A. D. W. Burgard, D. Fox, and A.B. Cremers, Integrating global position estimation and position tracking for mobile robots: The dynamic markov localization approach, In IEEE/RSJ International Conference on Intelligent Robots and Systems, 1998. [35] M. S. A.Stevens and H.F. Durrant-Whyte, OxNav: Reliable autonomous navigation, IEEE International Conference on Robotics and Automation, pp. 2607-2612, 1995. [36] J.J. Leonard, H. F. Durrant-Whyte, and I.J. Cox, Dynamic map building for an autonomous robot, International Journal of Robotics Research, vol. 11, pp. 286-298, 1992. [37] S. S. Blackman and R. Popoli. Design and analysis of modern tracking systems. Artech House Radar Library, 1999. [38] J. J. Leonard and H. F. Durrant-Whyte. Directed sonar sensing for mobile robot navigation. Kluwer Academic, 1992. [39] H. F. Durrant-Whyte, An autonomous guided vehicle for cargo handling applications, International Journal of Robotics Research, vol. 15, 1996. [40] B. Kuipers and Y. T. Byun, A robot exploration and mapping strategy based on a semantic hierarchy of spatial representations, Journal of Robotics and Autonomous Systems, vol. 8, pp. 47-63, 1991. [41] Merriam-Webster. Merriam-Webster's Collegiate Dictionary. 10th Edition. Merriam-Webster, Inc. Springfield, 1998. [42] D. Kortenkamp, L. D. Baker, and T. Weymouth, Using gateways to build a route map, In IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 2209-2214, 1992. [43] O. Aycard, F. Charpillet, D. Fohr, and J.F. Mari, Place learning and recognition using hidden markov models, IEEE International Conference on Intelligent Robots and Systems, pp. 1741-1746, 1997. [44] S. P. Engelson and D. V. McDermott, Error correction in mobile robot map learning, IEEE International Conference on Robotics and Automation, pp. 2555-2560, 1992. [45] S. Argamon-Engelson, Using image signatures for place recognition, vol. 19, pp. 941-951, 1998. [46] I. Ulrich and I. Nourbakhsh, Appearance- based place recognition for topological localization, IEEE International Conference on Robotics and Automation, pp. 1023- 1029, 2000. [47] E. W. Dijkstra. A note on two problems in connexion with graphs. Numerische Mathematik, 1959. [48] J. Borenstein, Control and kinematic design of multi-degree-of-freedom robots with compliant linkage, IEEE Transactions on Robotics and Automation, 1995. 105 [49] S. Shoval and J. Borenstein, Measurement of angular position of a mobile robot using ultrasonic sensors , ANS Conference on Robotics and Remote Systems, pp. 26-28, 1999. [50] A. I. Kentaro Ishii, Greg Saul, Masahiko Inami, and Takeo Igarashi, Active Navigation Landmarks for a Service Robot in a Home Environment, Proceedings of the 5th ACM/IEEE International Conference on Human Robot Interaction, 2010. [51] A. Singhal. Issues in Autonomous Mobile Robot Navigation. 1997. [52] S. Thrun, Bayesian landmark learning for mobile robot localization, Machine Learning pp. 41-76, 1998. [53] P. S. Maybeck. Stochastic models, estimation and control. Academic Press, Inc, 1979. [54] J. Taylor. An introduction to error analysis. University Science Books, 1997. [55] R. Smith and P. Cheeseman, On the estimation and representation of spatial uncertainty, International Journal of Robotics Research, pp. 56-68, 1987. [56] M. Welling. The Kalman Filter. 2000. [57] G. Welch and G. Bishop. An Introduction to the Kalman Filter. Chapel Hill 2001. [58] Y. Bar-Shalom, X. R. Li, and T. Kirubarajan. Estimation with applications to tracking and navigation. John Wiley and Sons, 2001. [59] A. Papoulis. Probability, Random Variables, and Stochastic Processes. McGraw-Hill, 1984. [60] L.D. Stone, C. A. Barlow, and T.L. Corwin. Bayesian multiple target tracking. Artech House, 1999. [61] S. M. Bozic. Digital and Kalman filtering. Edward Arnold, 1994. [62] S. I. Roumeliotis and G. A. Bekey, Bayesian estimation and Kalman filtering: A unified framework for mobile robot localization, IEEE International Conference on Robotics and Automation, pp. 2985-2992, 2000. [63] N.J. Gordon, D. J. Salmond, and A.F.M. Smith, Novel approach to nonlinear/non-gaussian bayesian state estimation, IEE Proceedings For Radar and Signal Processing, pp. 107-113, 1993. [64] J. Borenstein, H. R. Everett, and L. Feng. Navigating mobile robots: Systems and techniques. A K Peters, Wellesley, MA, 1996. [65] J.S. Liu, R. Chen, and Tanya Logvinenko. A theoretical framework for sequential importance sampling and resampling. Springer Verlag, 2001. [66] J. Liu and R. Chen, Sequential Monte Carlo methods for dynamic systems, Journal of American Statistical Association, vol. 93, 1998.
|