跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.138) 您好!臺灣時間:2025/12/07 17:54
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:甯煜宗
研究生(外文):Yu-Tzong Ning
論文名稱:高線性度與低跨軸敏感度之懸浮壓阻式垂直平板型加速度感測器研發
論文名稱(外文):Development of a vertical-plate-type Microaccelerometer with Suspended Piezoresistors Characterizing High Linearity and Low Cross-axis Sensitivity
指導教授:翁宗賢
指導教授(外文):Tzong-Shyan Wung
口試委員:張正憲王安邦沈弘俊邱銘漢
口試委員(外文):Jeng-Shian ChangAn-Bang WangHorn-Jiunn SheenMin-Han Chiu
口試日期:2015-01-30
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:應用力學研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:59
中文關鍵詞:高G值加速度感測器微機電製程機電整合離心式加速度測試高線性度低跨軸干擾
外文關鍵詞:High-G accelerometerHigh linearityLow cross-axis sensitivityPiezoresistorMEMSCentrifugal test
相關次數:
  • 被引用被引用:0
  • 點閱點閱:204
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究藉由電腦輔助工程方法並配合微機電製程設計製造一個壓阻式垂直平板型微加速度感測器。有別於傳統方法-在結構變形最大處內嵌壓阻器,在設計之初即規劃感測器在受到定量慣性加速度場後,於產生最大位移處放置四個相同的懸浮橋式壓阻器,並用佈線方式將各個壓阻器連線組合成惠斯同電橋電路,用於偵測變化量。而特殊壓阻配置方式預期有兩個結果;一者可以有效提升電壓輸出的敏感度,減少在規劃量測範圍及整合測試電路時的限制;二來也可以大幅度減少跨軸敏感度,顯著地提升系統於單一向性的表現。
本文設計感測器其主要核心元件包含有一組固定於兩側的垂直式彈性平板,並在平板中段處加入一個感測質量塊。在質量塊前後,也就是預期位移最大處各放置一組兩個懸浮橋式壓阻元件,每一個壓阻器兩端將分別繫於質量塊端及邊框固定端。利用數值模擬方法偶合結構應力場及壓阻轉換函式來分析最大應力產生位置及其值,避免應力超過安全設計範圍導致損壞情況;另外運用模態分析來計算自然頻率來推估可使用頻寬,最後透過壓阻效應分析所得輸出電訊號可以計算此結構下之預期敏感度。完成設計的感測器結構將利用大量深蝕刻技術製作於SOI晶圓上,並將電路佈局經由微影製程沉積表面與壓阻器匹配。使用直列式封裝(Dual-In-Package)完成測式晶片。接下來再使用可以提供高達3,000G加速度的離心機,結合數位化電路及RF傳輸模組進行測試實驗,遠端接收輸出電壓訊號。
本文所設計之加速度感測器其自然頻率約為232.4kHz,最大可承受加速度為10,000G。經由數次實驗,統計迴歸後得出其敏感度為3.0015μV/Vexc/G,最佳線性度為0.11%FS。而跨軸敏感度的測試結果在上述實驗範圍內其值幾乎低於本實驗電路之精度。利用文獻中提到的最佳表現計算法可以得到優值 (Figure of Merit)為609

This research developed a microaccelerometer via Computer-Aid-Design(CAE) and Micro Electro Mechanical Systems(MEMS) with high performance in linearity and cross-axis sensitivity. Unlike the conventional sensing elements which are always embedded at the position of maximum displacement, the present study situated the sensors at the locations where the maximum displacements of the structure are generated in order to raise up the maximal output than the former.
The core elements of accelerometer includes a vertical, double-ended flexural beam, a proof mass integrated at the middle section of the beam, and four suspended piezoresistors fixed at the mass block and across the trenches to the anchor pads. The mass block had maximum displacements of the dynamic structure which would activate the sensors to deliver maximal output. It was simulated by numerical method to analyze how much and where the maximal stress would be. The sensing chip was fabricated on a silicon-on-insulator(SOI) wafer through MEMS processes and installed by Dual-In-Package. The accelerometer was placed on a rate table that provided stable centrifugal acceleration up to approximately 3000 G for quasi-static testing. The output voltage of the accelerometer was digitized and radiofrequency transmitted for remote data acquisition.
The natural frequency was about 232.4 kHz from mode analysis. After numerous experiments, the correlations for the individual runs showed that the accelerometer had a sensitivity of 3.0015 μV/Vexc/G with extraordinary performance. The best linearity of the sensing output was only 0.11% of full scale output (FS, or 59 dB), as deduced from the average standard deviation of all test runs. The average of the maximum reading deviations from the corresponding correlated curves was approximately 0.26% FS. Moreover, the cross-axis sensitivity for the two orthogonal directions nearly vanished in the test range. With the high rigidity of the microstructure, the accelerometer exhibited an ultra high performance factor of 25.8 x 10^6 MHz. The accelerometer possessed exceptional sensitivity, linearity, and repeatability, and extremely low cross-axis interference and noise.


摘要 I
Abstract III
目錄 IV
表目錄 VII
圖目錄 VIII
符號表 X
第1章 簡介 1
1-1 引言 1
1-2 文獻回顧 2
1-2-1 加速度感測器的種類 2
1-2-2 高G値壓阻式加速度感測器開發案例 4
1-3 加速度感測器驗證方法 5
1-4 研究動機 5
1-5 本文架構 6
第2章 加速度感測器設計基礎 10
2-1 壓阻效應(Piezoresistance Effect) 10
2-1-1 電阻與壓阻的關係 10
2-2 壓阻係數表示法 11
2-2-1 壓阻式電阻分析 15
2-2-2 壓阻係數的影響因子修正 16
2-3 加速度感測器設計 16
2-3-1 壓阻器設計 17
2-3-2 解析電路 17
2-3-3 感測結構 18
2-4 數值模擬設定 19
2-5 效能評估方法 19
第3章 製造程序 26
3-1 SOI晶圓介紹 26
3-2 微機電製程 27
3-2-1 鋁線佈局 27
3-2-2 製作壓阻器與島狀結構 28
3-2-3 做動區 28
3-2-4 裸空區 29
3-2-5 切割晶圓與去除犧牲層 29
3-3 MEMS元件封裝程序 30
3-3-1 晶片級封裝 30
3-3-2 元件級封裝 30
3-3-3 系統級封裝 31
第4章 實驗平台建設 36
4-1 實驗系統運作架構 36
4-2 高轉速離心機 37
4-2-1 可轉動光學平板 37
4-2-2 變頻馬達與傳動系統 38
4-2-3 輔助支撐結構 38
4-2-4 監控設備 39
4-3 無線射頻即時感測訊號傳輸系統 39
4-3-1 儀表放大器 39
4-3-2 微處理機 40
4-3-3 無線傳輸 40
4-4 實驗系統整合 40
第5章 實驗結果與討論 45
5-1 數值分析模擬結果 45
5-1-1 感測軸分析結果 45
5-1-2 輸出電壓及敏感度修正 46
5-1-3 側軸分析結果 46
5-2 晶片實驗測試結果 47
5-2-1 主軸實驗結果 47
5-2-2 側軸實驗結果 48
5-3 結果討論與效能分析 48
第6章 結論與未來展望 54
6-1 結論 54
6-2 未來可繼續方向 54
參考文獻 56


Yazdi, N., F. Ayazi, and K. Najafi, Micromachined inertial sensors. Proceedings of the IEEE, 1998. 86(8):p p. 1640-1658.
2.Roylance, L.M. and J.B. Angell, Batch-Fabricated Silicon Accelerometer. IEEE Transactions on Electron Devices, 1979. ED-26(12): pp. 1911-1917.
3.Chen, P.L., R.S. Muller, and A.P. Andrews, Integrated silicon pi-fet accelerometer with proof mass. Sensors and Actuators, 1984. 5(2): pp. 119-126.
4.Rudolf, F., A micromechanical capacitive accelerometer with a two-point inertial-mass suspension. Sensors and Actuators, 1983. 4(C): pp. 191-198.
5.Dauderstadt, U.A., P.H.S. de Vries, R. Hiratsuka, and P.M. Sarro, Silicon accelerometer based on thermopiles. Sensors and Actuators: A. Physical, 1995. 46(1-3): pp. 201-204.
6.Marty, J., A. Malki, C. Renouf, P. Lecoy, and F. Baillieu, Fibre-optic accelerometer using silicon micromachining techniques. Sensors and Actuators: A. Physical, 1995. 47(1-3): pp. 470-473.
7.Dong, H., Y. Jia, Y. Hao, and S. Shen, A novel out-of-plane MEMS tunneling accelerometer. Sensors and Actuators, A: Physical, 2005. 120(2): p. 360-364.
8.Seshia, A.A., M. Palaniapan, T.A. Roessig, R.T. Howe, R.W. Gooch, T.R. Schimert, and S. Montague, A vacuum packaged surface micromachined resonant accelerometer. Journal of Microelectromechanical Systems, 2002. 11(6): pp. 784-793.
9.Ning, Y., Y. Loke, and G. McKinnon, Fabrication and characterization of high g-force, silicon piezoresistive accelerometers. Sensors and Actuators A: Physical, 1995. 48(1): pp. 55-61.
10.Wang, Z., D. Zong, D. Lu, B. Xiong, X. Li, and Y. Wang, A silicon micromachined shock accelerometer with twin-mass-plate structure. Sensors and Actuators, A: Physical, 2003. 107(1): pp. 50-56.
11.Kebin, F., C. Lufeng, X. Bin, and W. Yuelin, A silicon micromachined high-shock accelerometer with a bonded hinge structure. Journal of Micromechanics and Microengineering, 2007. 17(6): pp. 1206.
12.Shaoqun, S., C. Jian, and B. Minhang, Analysis on twin-mass structure for a piezoresistive accelerometer. Sensors and Actuators: A. Physical, 1992. 34(2): pp. 101-107.
13.Plaza, J.A., J. Esteve, and C. Cane, Twin-mass accelerometer optimization to reduce the package stresses. Sensors and Actuators, A: Physical, 2000. 80(3): pp. 199-207.
14.Lim, M.K., H. Du, C. Su, and W.L. Jin, A micromachined piezoresistive accelerometer with high sensitivity: Design and modelling. Microelectronic Engineering, 1999. 49(3-4): pp. 263-272.
15.Dong, P., X. Li, K. Zhang, X. Wu, S. Li, and S. Feng, Design, fabrication, and characterization of a high-performance monolithic triaxial piezoresistive high-g accelerometer. Pan Tao Ti Hsueh Pao/Chinese Journal of Semiconductors, 2007. 28(9): pp. 1482-1487.
16.Partridge, A., J.K. Reynolds, B.W. Chui, E.M. Chow, A.M. Fitzgerald, L. Zhang, . . . T.W. Kenny, High-performance planar piezoresistive accelerometer. Journal of Microelectromechanical Systems, 2000. 9(1): pp. 58-66.
17.Huang, S., X. Li, Z. Song, Y. Wang, H. Yang, L. Che, and J. Jiao, A high-performance micromachined piezoresistive accelerometer with axially stressed tiny beams. Journal of Micromechanics and Microengineering, 2005. 15(5): pp. 993-1000.
18.Harley, J.A. and T.W. Kenny, 1/f noise considerations for the design and process optimization of piezoresistive cantilevers. Journal of Microelectromechanical Systems, 2000. 9(2): pp. 226-235.
19.Kuells, R., S. Nau, M. Salk, and K. Thoma, Novel piezoresistive high-g accelerometer geometry with very high sensitivity-bandwidth product. Sensors and Actuators, A: Physical, 2012. 182: pp. 41-48.
20.Kuells, R., H. Dessonet, C. Bohland, S. Nau, and K. Thoma. Calibration methods for high-g accelerometers. 2013. Barcelona.
21.Kuells, R., M. Bruder, S. Nau, M. Salk, K. Thoma, and W. Hansch. Design of a 1D and 3D monolithically integrated piezoresistive MEMS high-g accelerometer. in 1st IEEE International Symposium on Inertial Sensors and Systems, ISISS 2014 - Proceedings. 2014.
22.Roy, A.L., H. Sarkar, A. Dutta, and T.K. Bhattacharyya, A high precision SOI MEMS-CMOS ±4g piezoresistive accelerometer. Sensors and Actuators, A: Physical, 2014. 210: pp. 77-85.
23.Zhou, Z., Y. Shi, J. Tant, and Y. Ding, Performance testing of a high range accelerometer. Chinese Journal of Sensors and Actuators, 2013. 26(6): pp. 834-837.
24.Bateman, V., F. Brown, and N. Davie, Use of a Beryllium Hopkinson Bar To Characterize a Piezoresistive Accelerometer In Shock Environments. Journal of the Institute of Environmental Sciences, 1996. 39(6): pp. 33-39.
25.Eklund, E.J. and A.M. Shkel, Single-mask fabrication of high-G piezoresistive accelerometers with extended temperature range. Journal of Micromechanics and Microengineering, 2007. 17(4): pp. 730-736.
26.Smith, C.S., Piezoresistance effect in germanium and silicon. Physical Review, 1954. 94(1): pp. 42-49.
27.Chapter 5 Piezoresistive sensing, in Handbook of Sensors and Actuators, B. Min-Hang, Editor. 2000, Elsevier Science B.V. pp. 199-239.
28.Griffiths, D.J., Introduction to Electrodynamics. 1999: Prentice Hall.
29.Kanda, Y., GRAPHICAL REPRESENTATION OF THE PIEZORESISTANCE COEFFICIENTS IN SILICON. IEEE Transactions on Electron Devices, 1982. ED-29(1): pp. 64-70.
30.Kanda, Y., Piezoresistance effect of silicon. Sensors and Actuators: A. Physical, 1991. 28(2): pp. 83-91.
31.唐興, 高G值壓阻式微型加速度感測器之設計與性能分析, 應用力學研究所. 2014, 臺灣大學.
32.McLaughlin, J.C. and A.F.W. Willoughby, Fracture of silicon wafers. Journal of Crystal Growth, 1987. 85(1–2): pp. 83-90.
33.Hopcroft, M.A., W.D. Nix, and T.W. Kenny, What is the Young''s modulus of silicon? Journal of Microelectromechanical Systems, 2010. 19(2): pp. 229-238.
34.Wortman, J.J. and R.A. Evans, Young''s modulus, shear modulus, and poisson''s ratio in silicon and germanium. Journal of Applied Physics, 1965. 36(1): pp. 153-156.
35.Ravi Sankar, A. and S. Das, A very-low cross-axis sensitivity piezoresistive accelerometer with an electroplated gold layer atop a thickness reduced proof mass. Sensors and Actuators A: Physical, 2013. 189(0): pp. 125-133.
36.Wung, T.-S., Y.-T. Ning, K.-H. Chang, S. Tang, and Y.-X. Tsai, Vertical-plate-type microaccelerometer with high linearity and low cross-axis sensitivity. Sensors and Actuators A: Physical, 2015. 222(0): pp. 284-292.
37.蕭宏, 羅正忠, and 張鼎張, 半導體製程技術導論. 2002, 台北市: 台灣培生教育出版.
38.蔡育軒, 不同構型之高G值壓阻式微型加速度計的研製探討, 應用力學研究所. 2014, 臺灣大學.
39.張凱翔, 高G值微型壓阻式加速度感測器之研製、封測及離心式加速度整合測試平台之架設, in 應用力學研究所. 2014, 臺灣大學..
40.林柏甫, 高線性度高 G 值加速感測晶片之設計模擬, 應用力學研究所. 2014, 臺灣大學.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top