跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.172) 您好!臺灣時間:2025/09/12 05:17
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:劉坤湘
研究生(外文):Kun-Hsiang Liu
論文名稱:水稻與綠豆脂肪運輸蛋白基因之選殖與分析
論文名稱(外文):Cloning and Characterization of Lipid Transfer Protein I Genes in Rice (Oryza sativa) and Mungbean (Vigna radiata)
指導教授:林彩雲林彩雲引用關係
學位類別:博士
校院名稱:國立清華大學
系所名稱:生命科學系
學門:生命科學學門
學類:生物學類
論文種類:學術論文
論文出版年:2003
畢業學年度:91
語文別:英文
論文頁數:106
中文關鍵詞:脂肪運輸蛋白鹽分逆境脫水冷逆境離層酸水分逆境
外文關鍵詞:lipid transfer proteinsalt stressdehydrationcold stressabscisic acid (ABA)water stress
相關次數:
  • 被引用被引用:2
  • 點閱點閱:202
  • 評分評分:
  • 下載下載:24
  • 收藏至我的研究室書目清單書目收藏:1
中文摘要
為了研究植物體因應逆境所產生的變化,我們使用單子葉植物的水稻(Oryza sativa)為研究材料,觀察水稻懸浮細胞在缺乏碳素源的營養逆境下的基因表現,並利用mRNA differential display的方法分離出此一逆境下基因表現量增加的脂肪運輸蛋白(lipid transfer protein,LTP)基因。LTP是一種小分子量、鹼性的蛋白質,結構上具有高保留性的八個cysteine形成四個雙硫鍵。由分子量的不同可分為LTPI (分子量約9 kDa)與LTPII (分子量約7 kDa)。LTP普遍存在植物體內,並在不同的組織中各有獨特的表現型態與功能。我們發現此一水稻LTPI (Osltp)基因在正常生長狀態的水稻植株中,表現在發育中與新鮮成熟種子以及成熟植株根部;並於與水份有關的逆境:高鹽、脫水、低溫與ABA (abscisic acid)處理等狀況下,在根部的表現增加。進一步觀察雙子葉植物綠豆(Vigna radiata)LTPI基因的表現,分離出兩個綠豆LTPI基因,Vrltp1與Vrltp2。Vrltp1表現於花芽、發育中的種子,而Vrltp2則只表現於花芽。但Vrltp1與Vrltp2在綠豆植株中的表現部位是在地上部的莖與葉,與Osltp在水稻中的表現部位在根部極為不同。在高鹽、脫水與ABA (abscisic acid)處理等的葉子,Vrltp1與Vrltp2表現亦增加。我們推測這些LTPI基因不僅具有組織表現的特異性,並皆為與水份有關的逆境,如高鹽、脫水、低溫與ABA (abscisic acid)處理等增加表現,可能與對抗逆境有關;而詳細機轉,則需要更進一步的研究。
ABSTRACT
To explore the changes in response to environmental stresses, we isolated a lipid transfer protein (LTP) gene in rice (Oryza sativa) suspension cells in the presence or absence of sucrose by using mRNA differential display. LTPs are small and basic proteins, which consist of eight highly conserved cysteines forming four disulfide bonds. Two main families of LTPs, LTPI and LTPII, are identified with molecular mass of 9 kDa and 7 kDa. LTPs exist in various plants, and the expression of plant LTPs shows temporal and spatial patterns. We found this rice ltp (Osltp) mRNA expressed in developing and fresh seeds, as well as roots in mature plants; and the level of Osltp mRNA increased under water stress, such as high salt, dehydration, low temperature, and abscisic acid (ABA) treatments. Furthermore, we isolated two novel mungbean (Vigna radiata) ltp genes, Vrltp1 and Vrltp2, by screening cDNA library. Both Vrltp1 and Vrltp2 mRNAs expressed in floral buds and only Vrltp1 mRNA expressed in immature seeds. In the vegetative tissues, the Vrltp1 and Vrltp2 mRNAs display their shoot specificity. The levels of Vrltp1 and Vrltp2 mRNAs also increase in response to salt, dehydration and ABA treatments. We assume that these ltp genes participate in the protection from damage under water stress, and the regulatory mechanisms are needed to be elucidated.
Table of Contents
Page
Acknowledgements-------------------------------------------------------------------------- iv
List of Figures--------------------------------------------------------------------------------- v
Abbreviation---------------------------------------------------------------------------------- vii
Abstract (in Chinese)------------------------------------------------------------------------ ix
Abstract (in English)------------------------------------------------------------------------- x
Background Study------------------------------------------------------------------------ xi
CHAPTER I: Cloning and Characterization of a Water Stress-responsive Lipid Transfer Protein I Gene in Rice (Oryza sativa)------------------------------------------- 1
1. Abstract------------------------------------------------------------------------------------ 2
2. Introduction------------------------------------------------------------------------------- 4
3. Materials and Methods------------------------------------------------------------------- 6
Plant Materials---------------------------------------------------------------------------- 6
Isolation of Sucrose Starvation Induced Genes by Differential Display---------- 7
Isolation of a Rice Ltp Gene------------------------------------------------------------ 8
Primer Extension Analysis-------------------------------------------------------------- 8
Isolation of Genomic DNA and Southern Blot Analyses-------------------------- 9
Stress Treatments------------------------------------------------------------------------- 9
Northern Blot Analyses----------------------------------------------------------------- 10
4. Results and Discussion------------------------------------------------------------------- 12
Sequence Analysis of the Osltp Gene------------------------------------------------ 12
Analysis of the Transcription Start Site of Osltp------------------------------------ 14
Osltp Is a Member of a Small Multigene Family----------------------------------- 15
Developmental and Spatial Expression Patterns of Osltp------------------------- 15
Osltp Gene Is Induced under Stress Conditions and ABA Treatments----------- 16
5. Figures------------------------------------------------------------------------------------- 20
6. References--------------------------------------------------------------------------------- 32
CHAPTER II: Cloning and Characterization of Two Novel Lipid Transfer Protein I Genes in Mungbean (Vigna radiata)------------------------------------------------------ 37
1. Abstract------------------------------------------------------------------------------------ 38
2. Introduction------------------------------------------------------------------------------- 39
3. Materials and Methods------------------------------------------------------------------- 41
Plant Materials and Growth------------------------------------------------------------ 41
Isolation of Mungbean Ltp Genes----------------------------------------------------- 41
Stress Treatments------------------------------------------------------------------------ 42
Northern Blot Analysis----------------------------------------------------------------- 43
4. Results and Discussion------------------------------------------------------------------- 44
Sequence Analysis of the Vrltp Genes------------------------------------------------ 44
Developmental and Spatial Expression Patterns of Vrltps------------------------- 45
Vrltp Genes Are Induced under Stress Conditions and ABA Treatments--------- 47
5. Figures------------------------------------------------------------------------------------- 50
6. References--------------------------------------------------------------------------------- 56
Conclusion------------------------------------------------------------------------------------ 61
APPENDEX--------------------------------------------------------------------------------- 62
(1) Plant Gene Register PGR98-058
Cloning and Sequencing of a Rice cDNA Encoding Translation Elongation Factor-1 Alpha (Accession No. AF030517)---------------------------------------------- 63
(2) Plant Gene Register PGR98-085
Cloning of a cDNA Encoding a Lipid Transfer Protein from Rice (Accession No. AF051369)----------------------------------------------------------------------------- 72
Anderson, K.V., and Poulsen, F.M. (1992) Three-dimensional structure in solution of acyl-coenzyme A binding protein from bovine liver. J. Mol. Biol. 226: 1131-1141.
Bernhard, W.R., Thoma, S., Botella, J., and Somerville, C.R. (1991) Isolation of a cDNA clone for spinach lipid transfer protein and evidence that the protein is synthesized by the secretory pathway. Plant Physiol. 95: 164-170.
Bouillon, P., Drischel, C., Vergnolle, C., Duranton, H., and Kader, J.C. (1987) The primary structure of spinach leaf phospholipid-transfer protein. Eur. J. Biolchem. 166: 387-391.
Coutos-Thevenot, P., Jouenne, T., Maes, O., Guerbette, F., and Grosbois, M. (1993) Four 9-kDa proteins excreted by somatic embryos of grapevine are isoforms of lipid-transfer proteins. Eur. J. Biochem. 217: 885-889.
Désormeaux, A., Blochet, J.E., Pézolet, M., and Marion, D. (1992) Amino acid sequence of a non-specific wheat phospholipid transfer protein and its conformation as revealed by infrared and Raman spectroscopy: role of disulfide bridges and phospholipids in the stabilization of the -helix structure. Biochim. Biophys. Acta 1121: 137-152.
Douliez, J.P., Michon, T., Elmorjani, K., and Marison, D. (2000) Structure, biological and technological functions of lipid transfer proteins and indolines, the major lipid binding proteins from cereal kernels. J. Cereal Sci. 32: 1-20.
Hughes, M.A., Dunn, M.A., Perace, R.S., White, A.J., and Zhang, L. (1992) An abscisic-acid-responsive, low temperature barley gene has homology with a maize phospholipid transfer protein. Plant Cell Environ. 15: 861-865.
Hwang, K.Y., Kim, K.K., Min, K., Eom, S.H., Yu, Y.G., Kim, S., Sweet, R.M., and Suh, S.W. (1993) Crystallization and preliminary X-ray crystallographic analysis of probably amylase/protease inhibitor-B from rice seeds. J. Mol. Biol. 229: 255-257.
Kader, J.C. (1975) Proteins and the intracellular exchange of lipids: stimulation of phospholipid exchange between mitochondria and microsomal fractions by proteins isolated from potato tuber. Biochim. Biophys. Acta 380: 31-44.
Kader, J.C. (1993) Lipid transport in plants. Lipid Metabolism in Plants (FL: CRC Press, Boca Raton).
Kader, J.C. (1997) Lipid-transfer proteins: a puzzling fammmily of plant proteins. Trends Plant Sci. 2: 66-70.
Madrid, S.M., and Von Wettstein, D. (1990) Reconciling contradictory notions on lipid transfer proteins in higher plants. Plant Physiol. Biochem. 29: 705-711.
Meijer, E.A., de Vries, S.C., Sterk, P., Gadella, D.W.J., Wirtz, K.W.A., and Hendriks, T. (1993) Characterization of the non-specific lipid transfer protein EP2 from carrot (Daucus carota L.). Mol. Cell. Biochem. 123: 159-166.
Molina, A., Segura, A., and Garcia-Olmedo, F. (1993) Lipid transfer proteins (nsLTPs) from barley and maize leaves are potent inhibitors of bacterial and fungal plant pathogens. FEBS Lett. 316: 119-122.
Mundy, J., and Rogers, J.C. (1986) Selective expression of a probable amylase/protease inhibitor in barley aleurone cells: comparison to the barley amylase/subtilisin inhibitor. Planta 169: 51-63.
Nichols, J.W. (1988) Kinetics of fluorescent-labeled phosphatidylcholine transfer between nonspecific lipid-transfer protein and phospholipid vesicles. Biochemistry 27: 1889-1896.
Pebay-Peyroula, E., Cohen-Addad, C., Lehmann, M.S., and Marion, D. (1992) Crystallographic data for the 9000 dalton wheat non-specific phospholipid transfer protein. J. Mol. Biol. 226: 563-564.
Plant, A.L., Cohen, A., Moses, M.S., and Bray, E.A. (1991) Nucleotide sequence and spatial expression pattern of a drought- and abscisic acid induced gene of tomato. Plant Physiol. 97: 900-906.
Pyee, J., and Kolattukudy, P.E. (1995) The gene for the major cuticular wax-associated protein and three homologous genes from broccoli (Brassica oleracea) and their expression patterns. Plant J. 7: 49-59.
Segura, A., Moreno, M., and Garcia-Olmedo, F. (1993) Purification and pathogenic activity of lipid transfer proteins from the leaves of Arabidopsis and spinach. FEBS Lett. 3: 243-246.
Shin, D.H., Lee, J.Y., Hwang, K.Y., Kim, K.K., and Su, S.W. (1995) High-resolution crystal structure of the non-specific lipid-transfer protein from maize seedlings. Structure 3:189-199.
Simorre, J.P., Caille, A., Marion, D., Marion, D., and Ptak, M. (1991) Two- and three-dimensional 1H-NMR studies of a wheat phospholipid transfer protein. Sequential assignments and secondary structure. Biochemistry 30: 11600-11608.
Sterk., P., Booij, H., Scheleekens, G.A., Van Kammen, A., and de Vries, S.C. (1991) Cell-specific expression of the carrot EP2 lipid transfer protein gene. Plant Cell 3: 907-921.
Takishima, K., Watanabe, S., Yamada M., and Mamiya, G. (1988) The amino-acid sequence of the nonspecific lipid transfer protein from germinated castor bean endosperms. Biochim. Biophys. Acta 870: 248-255.
Takishima, K., Watanabe, S., Yamada M., Suga T., and Mamiya, G. (1988) Amino acid sequences of two nonspecific lipid-transfer proteins from germinated castor bean. Eur. J. Biochem. 177: 241-249.
Tchang, F., This, P., Stiefel, V., Arondel, V., and Morch, M.D. (1988) Phospholipid transfer protein: full-length cDNA and amino acid sequence in maize. Amino acid sequence homologies between plant phospholipid transfer proteins. J. Biol. Chem. 263: 16489-16855.
Thomas, P.S. (1983) Hybridization of denatured RNA transferred or dotted to nitrocellulose paper. Methods Enzymol. 100: 255-266.
Torres-Schumann, S., Godoy, J.A., and Pintor-Toro, J.A. (1992) Apropable lipid transfer protein gene induced by NaCl in stems of tomato plants. Plant Mol. Biol. 18: 749-757.
Yu, Y.G., Chung, C.H., Fowler, A., and Suh, S.W. (1988) Amino acid sequence of a proable amylase/protease inhibitor from rice seeds. Arch. Biochem. Biophys. 265: 466-475.
Bray, E. (1993). Molecular responses to water deficit. Plant Physiol. 103, 1035-1040.
Douliez, J.P., Michon, T., Elmorjani, K., Marison, D. (2000) Structure, biological and technological functions of lipid transfer proteins and indolines, the major lipid binding proteins from cereal kernels. J. Cereal Sci. 32, 1-20.
Foster, G.D., Robinson, S.W., Blundell, R.P., Roberts, M.R., Hodge, R., Draper, J., Scott, R.J. (1992) A Brassica napus mRNA encoding a protein homologous to phospholipid transfer proteins, is expressed specifically in the tapetum and developing microspores. Plant Sci. 84, 187-192.
Geliebter, J., Zeff, R.A., Melvold, R.W., Nathenson, S.G. (1986) Mitotic recombination in germ cells generated two major histocompatibility complex mutant genes shown to be identical by RNA sequence analysis. Pro. Natl. Acad. Sci. USA 83, 3371-3375.
Guiderdoni, E., Cordero, M.J., Vignols, F., Garcia-Garrido, J.M., Lescot, M., Tharreau, D., Meynard, D., Ferrière, N., Notteghem, J.L., Delseny, M. (2002) Inducibility by pathogen attack and developmental regulation of the rice Ltp1 gene. Plant Mol. Biol. 49, 683-699.
Hincha, D.K. (2002) Cryoprotectin: a plant lipid transfer protein homologue that stabilizes membranes during freezing. Phil. Trans. R. Soc. Lond. 357, 909-916.
Huges, M.A., Dunn, M.A., Pearce, R.S., White, A.J., Zhang, L. (1992) An abscisic-acid-responsive, low temperature barley gene has homology with a maize phospholipid transfer protein. Plant Cell Environ. 15, 861-865.
Kader, J.C. (1996) Lipid transfer proteins in plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 47, 627-654.
Koltunow, A.M., Truettner, J., Cox, K.H., Wallroth, M., Goldberg, R.B. (1990) Different temperol and spatial gene expression patterns occur during anther development. Plant Cell 2, 1201-1224.
Liang, P., Pardee, A.B. (1992) Differential display of eukaryotic messenger RNA by means of polymerase chain reaction. Science 257, 967-971.
Liu, K.H., Lin, T.Y. (1998) Cloning of a cDNA encoding a lipid transfer protein from rice (Genbank accession number: AF051369) (PGR98:085). Plant Physiol. 117, 333.
Maniatis, T., Fritsch, E.F., Sambrook, J. (2001) Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratories, Cold Spring Harbor, New York.
Molina, A., Diaz, I., Vasil, I.K. (1996) Two cold-inducible genes encoding lipid transfer protein LTP4 from barley show differential responses to bacterial pathogens. Mol. Gen. Genet. 252, 162-168.
Murashige, T, Skoog, F. (1962) A revised medium for rapid growth and bioassays with tobacco tissue culture. Physiol. Plant 15, 473-497.
Murray, M.G., Thompson, W.F. (1980) Rapid isolation of high-molecular-weight plant DNA. Nucl. Acids Res. 8, 4321-4325.
Plant, A.L., Cohen, A., Moses, M.S., Bray, E.A. (1991) Nucleotide sequence and spatial expression pattern of a drought- and abscisic acid-induced gene of tomato. Plant Physiol. 97, 900-906.
Shin, D.H., Lee, J.Y., Hwang, K.Y., Kim, K.K., Suh, S.W. (1995) High-resolution crystal structure of the non-specific lipid-transfer protein from maize seedlings. Structure 3, 189-199.
Sterk, P., Booij, H., Schellekens, G.A., Kammen, A.V., De Vries, S.C. (1991) Cell-specific expression of the carrot EP2 lipid transfer protein gene. Plant Cell 3, 907-921.
Taiz, L., Zeiger, E. (2000) Plant Physiology, Sinauer Associates Inc., USA.
Thoma, S., Hecht, U., Kippers, A., Botella J., De Vries, S., Somerville, C. (1994) Tissue-specific expression of a gene encoding a cell wall-localized lipid transfer protein from Arabidopsis. Plant Physiol. 105, 35-45.
Thomas, P.S. (1983) Hybridization of denatured RNA transferred or dotted to nitrocellulose paper. Methods Enzymol. 100, 255-266.
Thomas, S., Kaneko, Y., Somerville, C. (1993) A non-specific lipid transfer protein from Arabidopsis is a cell wall protein. Plant J. 3, 427-436.
Treviño, M.B., O’Connell, M.A. (1998) Three drought-responsive members of the nonspecific lipid-transfer protein gene family in Lycopersicon pennellii show different developmental patterns of expression. Plant Physiol. 116, 1461-1468.
Vignols, F., Lund, G., Pammi, S., Tremousaygue, D., Grellet, F., Kader, J.C., Puigdomenech, P., Delseny, M. (1994) Characterization of a rice gene coding for a lipid transfer protein. Gene 142, 265-270.
Vignols, F., Wigger, M., García-Garrido, J.M., Grellet, F., Kader, J.C., Delseny, M. (1997) Rice lipid transfer protein (LTP) genes belong to a complex multigene family and are differentiall regulated. Gene 195, 177-186.
Yamada, M. (1992) Lipid transfer proteins in plants and mocroorganisms. Plant Cell Physiol. 33, 1-6.
Bernhard, W.R., and Somerville C.R. (1989) Coidentity of putative amylase inhibitors from barley and finger millet with phospholipid transfer proteins inferred from amino acid sequence homology. Arch. Biochem. Biophys. 269: 695-697.
Bray, E. (1993) Molecular responses to water deficit. Plant Physiol. 103: 1035-1040.
Cammue, B.P., Thevissen, K., Hendriks, M., Eggermont, K., Goderis, I.J., Proost, P., Van Damme, J., Osborn, R.W., Guerbette, F., and Kader, J.C. (1995) A potent antimicrobial protein from onion seeds showing sequence homology to plant lipid transfer proteins. Plant Physiol. 109: 445-455.
Douliez, J.P., Michon, T., Elmorjani, K., and Marison, D. (2000) Structure, biological and technological functions of lipid transfer proteins and indolines, the major lipid binding proteins from cereal kernels. J. Cereal Sci. 32: 1-20.
Guiderdoni, E., Cordero, M.J., Vignols, F., Garcia-Garrido, J.M., Lescot, M., Tharreau, D., Meynard, D., Ferrière, N., Notteghem, J.L., and Delseny, M. (2002) Inducibility by pathogen attack and developmental regulation of the rice Ltp1 gene. Plant Mol. Biol. 49: 683-699.
Kader, J.C. (1993) Lipid transport in plants. Lipid Metabolism in Plants (FL: CRC Press, Boca Raton).
Kader, J.C. (1996) Lipid transfer proteins in plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 47: 627-654.
Lemieux, B. (1996) Molecular genetics of epicuticular wax biosynthesis. Trends Plant Sci. 1: 312-318.
Lindorff-Larsen, K., Lerche, M.H., Poulsen, F.M., Roepstorff, P., and Winther, J.R. (2001) Barley lipid transfer protein, LTP1, contains a new type of lipid-like post-translational modification. J. Biol. Chem. 276: 33547-33553.
Liu, K.H., and Lin, T.Y. (1998) Cloning of a cDNA encoding a lipid transfer protein from rice (Genbank accession number: AF051369) (PGR98:085). Plant Physiol. 117: 333.
Maldonado, A.M., Doerner, P., Dixon, R.A., Lamb, C.J., and Cameron, R.K. (2002) A putative lipid transfer protein involved in systemic resistance signaling in Arabidopsis. Nature 419: 399-403.
Molina, A., Diaz, I., and Vasil, I.K. (1996) Two cold-inducible genes encoding lipid transfer protein LTP4 from barley show differential responses to bacterial pathogens. Mol. Gen. Genet. 252: 162-168.
Park, S. Y., Jauh, G.Y., Mollet, J.C., Eckard, K.J., Nothnagel, E.A., Walling, L.L., and Lord, E.M. (2000) A lipid transfer-like protein is necessary for lily pollen tube adhesion to an in vitro stylar matrix. Plant Cell 12: 151-163.
Pastorello, E.A., Farioli, L., Pravettoni, V., Ispano, M., Scibola, E., Trambaioli, C., Giuffrida, M.G., Ansaloni, R., Godovac-Zimmermann, J., Conti, A., Fortunato, D., and Ortolani, C. (2000) The maize major allergen, which is responsible for food-induced allergic reactions, is a lipid transfer protein. J. Allergy Clin. Immunol. 106: 744-751.
Plant, A.L., Cohen, A., Moses, M.S., and Bray, E.A. (1991) Nucleotide sequence and spatial expression pattern of a drought- and abscisic acid-induced gene of tomato. Plant Physiol. 97: 900-906.
Sambrook, J., Fritsch, E.F., and Maniatis, T. (2001) Molecular Cloning, A Laboratory Manual (New York: Cold Spring Harbor Laboratory Press).
Sterk, P., Booij, H., Schellekens, G.A., Kammen, A.V., and De Vries, S.C. (1991) Cell-specific expression of the carrot EP2 lipid transfer protein gene. Plant Cell 3: 907-921.
Taiz, L., and Zeiger, E. (2000) Abscisic acid: A seed maturation and antistress signal. Plant Physiology (USA: Sinauer Associates Inc.), 539-558.
Thomas, P.S. (1983) Hybridization of denatured RNA transferred or dotted to nitrocellulose paper. Methods Enzymol. 100: 255-266.
Thomas, S., Kaneko, Y., and Somerville, C. (1993) A non-specific lipid transfer protein from Arabidopsis is a cell wall protein. Plant J. 3: 427-436.
Treviño, M.B., and O’Connell, M.A. (1998) Three drought-responsive members of the nonspecific lipid-transfer protein gene family in Lycopersicon pennellii show different developmental patterns of expression. Plant Physiol. 116: 1461-1468.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top