跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.103) 您好!臺灣時間:2025/11/22 05:59
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳紀芃
研究生(外文):Chi-Peng Chen
論文名稱:田菁生物炭添加對土壤養分與溫室氣體釋放的影響
論文名稱(外文):Effect of Sesbania sesban Biochar Amendment on Soil Nutrients and Greenhouse Gas Emission
指導教授:鄭智馨
口試委員:賴朝明陳建德
口試日期:2013-07-04
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:森林環境暨資源學研究所
學門:農業科學學門
學類:林業學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:67
中文關鍵詞:生物炭化學結構溫室氣體碳礦化氮礦化土壤養分
外文關鍵詞:biocharchemical structuregreenhouse gascarbon mineralizationnitrogen mineralizationsoil nutrients
相關次數:
  • 被引用被引用:0
  • 點閱點閱:566
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
現有的研究顯示施加生物炭會影響土壤中碳及氮的礦化過程,因而能改 變溫室氣體的釋放;也發現施加生物炭能有效提昇土壤的物理、化學性質,進 而提高農業生產的效率。本研究探討 1. 未炭化的綠肥作物和其不同炭化溫度之 生物炭結構上的差異;2. 將上述材料加入土壤後,這些差異如何影響土壤二氧 化碳、氧化亞氮及甲烷的釋放;3. 上述材料如何影響土壤中碳、氮的礦化,以 及磷及其他養分的釋放;以及 4. 檢驗施加上述材料對作物生物量及達有龍施用 效果的影響。本研究使用田菁作為材料,以 200°C、300°C、400°C 及 500°C 的 溫度將其炭化,分析田菁及其生物炭化學結構的差異,並將上述材料加入土壤 進行孵育試驗,過程中收集所釋放之土壤溫室氣體以及淋洗溶液進一步分析; 另外也以上述材料進行作物盆栽試驗及達有龍吸附試驗。實驗發現添加生物炭 使土壤二氧化碳及氧化亞氮累積釋放量顯著減少,並使甲烷被土壤吸收;越高 溫炭化的生物炭在土壤中碳礦化的速度越慢,氮的礦化量也越少,甚至造成固 定化作用;生物炭能釋出磷、鉀、鈣、鎂到土壤中,釋放量與炭化溫度亦成正 比;施加生物炭可能降低作物生物量,並降低達有龍的效用。本研究歸納出, 炭化能使生物質內的碳氮轉變為不易分解的形式,因而減少其礦化及釋放;將 田菁炭化可以達成減緩溫室氣體釋放的目標,然而當炭化溫度升高,田菁作為 綠肥作物的功能隨之減少。

Studies have shown that amending biochar to soil is able to change the processes of C and N mineralization, therefore affect the emission of soil greenhouse gases; it can also improve the physical and chemical properties of soil, therefore enhance the agricultural performance. The aims of this study are to understand 1. How do charring temperature affect the chemical structure of biochar, and what are the structural differences between raw material and biochar; 2. How do these structural differences affect the emission of soil carbon dioxide, nitrous oxide and methane after the biochar and raw material are amended into soil; 3. How do these amendments affect the mineralization of C and N, and the release of P and other nutrients; and 4. The effect of these amendments on crop biomass and Diuron performance. First of all, we charred Sesbania sesban at 200°C, 300°C, 400°C, and 500°C, then analyzed the chemical structure of these materials. Second, we combined these materials with soil to carry out incubation experiments, and collected emitted greenhouse gases and leached solution during incubation. Last, we combined these materials and soil to carry out crop pot experiment and experiment of Diuron sorption. The results show that the emission of carbon dioxide and nitrous oxide are significantly lower in the biochar amended treatment, while methane is uptaked by soil. The mineralization of C and N are slower when biochar charred at higher temperature were added to soil, and the addition even led to soil N immobilization. Biochar may release P, K, Ca and Mg into the soil, and the released amount is proportional to the charring temperature. Biochar amendment may decrease the crop biomass and the performance of Diuron. We conclude that charring changes the structure of C and N in raw material into a more stable state and slows down their mineralization processes; charring Sesbania sesban into biochar leads to reduced emission of soil greenhouse gases, but as the charring temperature rises, Sesbania sesban gradually loses its function as green manure.

摘要 ............................................................................................................... i
Abstract..........................................................................................................ii 目錄...............................................................................................................iii
圖目錄............................................................................................................vi
表目錄..........................................................................................................viii
1 前言.............................................................................................................1
2 材料與方法 ...................................................................................................5 2.1 土壤採樣與基本性質分析.............................................................................5
2.2 生物炭製備與基本性質分析 ........................................................................7
2.3 生物炭結構分析 ........................................................................................9
2.3.1 固態核磁共振光譜分析 (Solid state 13C Nuclear Magnetic Resonance Spectroscopy,NMR).........................................................................................9
2.3.2 傅立葉轉換紅外線光譜分析 (Fourier Transform Infrared Spectroscopy, FTIR) ..............................................................................................................9
2.3.3 X 射線近吸收邊限精細結構 (Near Edge X-ray Absorption Fine Structure, NEXAFS)..........................................................................................................9
2.4 溫室氣體採樣與分析.................................................................................11
2.4.1 二氧化碳之採樣與分析............................................................................11 2.4.2 氧化亞氮及甲烷之採樣與分析..................................................................12
2.5 淋洗試驗與分析 ......................................................................................13
2.6 盆栽試驗 ................................................................................................14
2.7 農藥吸附試驗 .........................................................................................15
2.8 統計分析 ................................................................................................16
3 結果 ..........................................................................................................17 3.1 土壤與生物炭基本性質 .............................................................................17
3.1.1 土壤基本性質........................................................................................17 3.1.2 生物炭基本性質.....................................................................................17
3.2 生物炭結構 .............................................................................................20
3.2.1 固態核磁共振光譜分析............................................................................20 3.2.2 傅立葉轉換紅外線光譜分析.....................................................................20 3.2.3 X 射線近吸收邊限精細結構......................................................................21
3.3 溫室氣體釋放 .........................................................................................22
3.3.1 二氧化碳之釋放.....................................................................................22 3.3.2 氧化亞氮之釋放.....................................................................................22 3.3.3 甲烷之吸收...........................................................................................23
3.4 淋洗試驗 ................................................................................................24
3.4.1 無機態氮的淋洗.....................................................................................24 3.4.2 磷的淋洗...............................................................................................25
3.4.3 其他養分的淋洗.....................................................................................25
3.5 盆栽試驗 ................................................................................................26
3.6 農藥吸附試驗 .........................................................................................27
4 討論 ..........................................................................................................28
4.1 生物炭結構 .............................................................................................28
4.2 生物炭對土壤碳、氮礦化的影響 ................................................................30 4.2.1 碳的礦化...............................................................................................30
4.2.2 氮的礦化...............................................................................................31
4.3 生物炭對土壤溫室氣體釋放的影響 .............................................................33 4.3.1 氧化亞氮的釋放.....................................................................................33 4.3.2 甲烷的吸收...........................................................................................34
4.4 生物炭對土壤養分釋放及生物量與農藥吸附的影響........................................36 4.4.1 有效性磷的釋放.....................................................................................36
4.4.2 其他土壤養分的釋放...............................................................................36
4.4.3 生物炭添加對作物生物量的影響...............................................................37 4.4.4 生物炭添加對農藥吸附的影響..................................................................38
5 結論...........................................................................................................39
6 參考資料 ....................................................................................................63

Aguilar-Chavez, A., Diaz-Rojas, M., Cardenas-Aquino, M.d.R., Dendooven, L., Luna-Guido, M., 2012. Greenhouse gas emissions from a wastewater sludge- amended soil cultivated with wheat (Triticum spp. L.) as affected by different application rates of charcoal. Soil Biology and Biochemistry 52, 90-95.
Baldock, J.a., Smernik, R.J., 2002. Chemical composition and bioavailability of thermally altered Pinus resinosa (Red pine) wood. Organic Geochemistry 33, 1093-1109.
Brady, N.W., R., 2008. The Nature and Properties of Soils, 14th Edition. Prentice Hall Inc, New Jersey, USA.
Broaddus, G.M., J.E. York, and J. M. Hoseley, 1965. Factors affecting the levels of nitrate nitrogen in cured tobacco leaves. Tob. Sci., 149-157.
Bruun, E.W., Ambus, P., Egsgaard, H., Hauggaard-Nielsen, H., 2012. Effects of slow and fast pyrolysis biochar on soil C and N turnover dynamics. Soil Biology and Biochemistry 46, 73-79.
Case, S.D.C., McNamara, N.P., Reay, D.S., Whitaker, J., 2012. The effect of biochar addition on N2O and CO2 emissions from a sandy loam soil – The role of soil aeration. Soil Biology and Biochemistry 51, 125-134.
Chan, K.Y., Van Zwieten, L., Meszaros, I., Downie, a., Joseph, S., 2007. Agronomic values of greenwaste biochar as a soil amendment. Australian Journal of Soil Research 45, 629-629.
DeLuca, T.H., MacKenzie, M.D., Gundale, M.J., Holben, W.E., 2006. Wildfire- Produced Charcoal Directly Influences Nitrogen Cycling in Ponderosa Pine Forests. Soil Science Society of America Journal 70, 448.
Dempster, D.N., Gleeson, D.B., Solaiman, Z.M., Jones, D.L., Murphy, D.V., 2011. Decreased soil microbial biomass and nitrogen mineralisation with Eucalyptus biochar addition to a coarse textured soil. Plant and Soil 354, 311-324.
Feng, Y., Xu, Y., Yu, Y., Xie, Z., Lin, X., 2012. Mechanisms of biochar decreasing methane emission from Chinese paddy soils. Soil Biology and Biochemistry 46, 80-88.
Galvez, A., Sinicco, T., Cayuela, M.L., Mingorance, M.D., Fornasier, F., Mondini, C., 2012. Short term effects of bioenergy by-products on soil C and N dynamics,nutrient availability and biochemical properties. Agriculture, Ecosystems &
Environment 160, 3-14. Glaser, B., Haumaier, L., Guggenberger, G., Zech, W., 2001. The ''Terra Preta''
phenomenon: a model for sustainable agriculture in the humid tropics.
Naturwissenschaften 88, 37-41. Glaser, B., Lehmann, J., Zech, W., 2002. Ameliorating physical and chemical
properties of highly weathered soils in the tropics with charcoal - a review.
Biology and Fertility of Soils 35, 219-230. Graversen, R.G., Mauritsen, T., Tjernstrom, M., Kallen, E., Svensson, G., 2008.
Vertical structure of recent Arctic warming. Nature 451, 53-56. Hopkins, D.W., 2008. Carbon Mineralization. In: Carter, M.R., Gregorich, E.G.
(Eds.), Soil Sampling and Methods of Analysis. CRC Press, Canada. Hossain, M.K., Strezov, V., Chan, K.Y., Ziolkowski, A., Nelson, P.F., 2011.
Influence of pyrolysis temperature on production and nutrient properties of
wastewater sludge biochar. Journal of environmental management 92, 223-228. Jones, D.L., Rousk, J., Edwards-Jones, G., DeLuca, T.H., Murphy, D.V., 2012.
Biochar-mediated changes in soil quality and plant growth in a three year field
trial. Soil Biology and Biochemistry 45, 113-124. Karhu, K., Mattila, T., Bergstrom, I., Regina, K., 2011. Biochar addition to
agricultural soil increased CH4 uptake and water holding capacity – Results from a short-term pilot field study. Agriculture, Ecosystems & Environment 140, 309- 313.
Keiluweit, M., Nico, P.S., Johnson, M.G., Kleber, M., 2010. Dynamic molecular structure of plant biomass-derived black carbon (biochar). Environmental science & technology 44, 1247-1253.
Knoblauch, C., Maarifat, A.-A., Pfeiffer, E.-M., Haefele, S.M., 2011. Degradability of black carbon and its impact on trace gas fluxes and carbon turnover in paddy soils. Soil Biology and Biochemistry 43, 1768-1778.
Kwapinski, W., Byrne, C.M.P., Kryachko, E., Wolfram, P., Adley, C., Leahy, J.J., Novotny, E.H., Hayes, M.H.B., 2010. Biochar from Biomass and Waste. Waste and Biomass Valorization 1, 177-189.
Laird, D., Fleming, P., Wang, B., Horton, R., Karlen, D., 2010. Biochar impact on nutrient leaching from a Midwestern agricultural soil. Geoderma 158, 436-442.
Lehmann, J., 2007. A handful of carbon. nature 447, 143-144.Lehmann, J., Gaunt, J., Rondon, M., 2006. Bio-char Sequestration in Terrestrial Ecosystems – A Review. Mitigation and Adaptation Strategies for Global Change 11, 395-419.
Liang, B., Lehmann, J., Solomon, D., Sohi, S., Thies, J.E., Skjemstad, J.O., Luizao, F.J., Engelhard, M.H., Neves, E.G., Wirick, S., 2008. Stability of biomass- derived black carbon in soils. Geochimica et Cosmochimica Acta 72, 6069-6078.
Luo, Y., Durenkamp, M., De Nobili, M., Lin, Q., Brookes, P.C., 2011. Short term soil priming effects and the mineralisation of biochar following its incorporation to soils of different pH. Soil Biology and Biochemistry 43, 2304-2314.
Major, J., Rondon, M., Molina, D., Riha, S.J., Lehmann, J., 2010. Maize yield and nutrition during 4 years after biochar application to a Colombian savanna oxisol. Plant and Soil 333, 117-128.
Mehlich, A., 1984. Mehlich 3 soil test extractant: A modification of Mehlich 2 extractant. Communications in Soil Science and Plant Analysis 15, 1409-1416.
Mukherjee, A., Zimmerman, A.R., 2013. Organic carbon and nutrient release from a range of laboratory-produced biochars and biochar–soil mixtures. Geoderma 193- 194, 122-130.
Munroe, A.D.A.C.P., 2009. Physical Properties of Biochar. In: Joseph, J.L.S. (Ed.), Biochar for Environmental Management: Science and Technology. Earthscan, London, UK.
Nelissen, V., Rutting, T., Huygens, D., Staelens, J., Ruysschaert, G., Boeckx, P., 2012. Maize biochars accelerate short-term soil nitrogen dynamics in a loamy sand soil. Soil Biology and Biochemistry 55, 20-27.
Novak, J.M., Busscher, W.J., Watts, D.W., Laird, D.A., Ahmedna, M.A., Niandou, M.A.S., 2010. Short-term CO2 mineralization after additions of biochar and switchgrass to a Typic Kandiudult. Geoderma 154, 281-288.
Rajkovich, S., Enders, A., Hanley, K., Hyland, C., Zimmerman, A.R., Lehmann, J., 2011. Corn growth and nitrogen nutrition after additions of biochars with varying properties to a temperate soil. Biology and Fertility of Soils 48, 271-284.
Roberts, K.G., Gloy, B.A., Joseph, S., Scott, N.R., Lehmann, J., 2009. Life cycle assessment of biochar systems: Estimating the energetic, economic, and climate change potential. Environmental Science & Technology 44, 827-833.
Schlesinger, W.H., 1997. Biogeochemistry: An Analysis of Global Change. Academic Press, San Diego, CA. USA.Schulz, H., Glaser, B., 2012. Effects of biochar compared to organic and inorganic fertilizers on soil quality and plant growth in a greenhouse experiment. Journal of Plant Nutrition and Soil Science 175, 410-422.
Searchinger, T., Heimlich, R., Houghton, R.A., Dong, F., Elobeid, A., Fabiosa, J., Tokgoz, S., Hayes, D., Yu, T.H., 2008. Use of U.S. croplands for biofuels increases greenhouse gases through emissions from land-use change. Science 319, 1238-1240.
Solomon, D., Lehmann, J., Kinyangi, J., Amelung, W., Lobe, I., Pell, A., Riha, S., Ngoze, S., Verchot, L., Mbugua, D., Skjemstad, J., Schafer, T., 2007a. Long-term impacts of anthropogenic perturbations on dynamics and speciation of organic carbon in tropical forest and subtropical grassland ecosystems. Global Change Biology 13, 511-530.
Solomon, D., Lehmann, J., Thies, J., Schafer, T., Liang, B., Kinyangi, J., Neves, E., Petersen, J., Luizao, F., Skjemstad, J., 2007b. Molecular signature and sources of biochemical recalcitrance of organic C in Amazonian Dark Earths. Geochimica et Cosmochimica Acta 71, 2285-2298.
Song, W., Guo, M., 2012. Quality variations of poultry litter biochar generated at different pyrolysis temperatures. Journal of Analytical and Applied Pyrolysis 94, 138-145.
Spokas, K.a., Koskinen, W.C., Baker, J.M., Reicosky, D.C., 2009. Impacts of woodchip biochar additions on greenhouse gas production and sorption/degradation of two herbicides in a Minnesota soil. Chemosphere 77, 574-581.
Spokas, K.A., Novak, J.M., Venterea, R.T., 2011. Biochar’s role as an alternative N- fertilizer: ammonia capture. Plant and Soil 350, 35-42.
Tagoe, S.O., Horiuchi, T., Matsui, T., 2008. Effects of carbonized and dried chicken manures on the growth, yield, and N content of soybean. Plant and Soil 306, 211- 220.
Van Zwieten, L., Kimber, S., Morris, S., Chan, K.Y., Downie, a., Rust, J., Joseph, S., Cowie, a., 2009. Effects of biochar from slow pyrolysis of papermill waste on agronomic performance and soil fertility. Plant and Soil 327, 235-246.
Van Zwieten, L.S., Bhupinderpal ; Joseph, Stephen ;Kimber, Stephen ; Cowie, Annette ;Chan, K. Yin 2009. Biochar and Emissions of Non-CO2 GreenhouseGases from Soil. In: Johannes Lehmann, S.J. (Ed.), Biochar for Environmental
Management: Science and Technology. Earthscan, London, UK. Wang, J., Zhang, M., Xiong, Z., Liu, P., Pan, G., 2011. Effects of biochar addition on N2O and CO2 emissions from two paddy soils. Biology and Fertility of Soils 47,
887-896. Warnock, D.D., Mummey, D.L., McBride, B., Major, J., Lehmann, J., Rillig, M.C.,
2010. Influences of non-herbaceous biochar on arbuscular mycorrhizal fungal abundances in roots and soils: Results from growth-chamber and field experiments. Applied Soil Ecology 46, 450-456.
Yanai, Y., Toyota, K., Okazaki, M., 2007. Effects of charcoal addition on N 2 O emissions from soil resulting from rewetting air-dried soil in short-term laboratory experiments. Soil Science and Plant Nutrition 53, 181-188.
Yang, Y., Sheng, G., Huang, M., 2006. Bioavailability of diuron in soil containing wheat-straw-derived char. The Science of the total environment 354, 170-178.
Yu, L., Tang, J., Zhang, R., Wu, Q., Gong, M., 2012. Effects of biochar application on soil methane emission at different soil moisture levels. Biology and Fertility of Soils 49, 119-128.
Yu, X.-Y., Ying, G.-G., Kookana, R.S., 2009. Reduced plant uptake of pesticides with biochar additions to soil. Chemosphere 76, 665-671.
Zavalloni, C., Alberti, G., Biasiol, S., Vedove, G.D., Fornasier, F., Liu, J., Peressotti, A., 2011. Microbial mineralization of biochar and wheat straw mixture in soil: A short-term study. Applied Soil Ecology 50, 45-51.
Zhang, A., Cui, L., Pan, G., Li, L., Hussain, Q., Zhang, X., Zheng, J., Crowley, D., 2010. Effect of biochar amendment on yield and methane and nitrous oxide emissions from a rice paddy from Tai Lake plain, China. Agriculture, Ecosystems & Environment 139, 469-475.
Zimmerman, A.R., Gao, B., Ahn, M.-Y., 2011. Positive and negative carbon mineralization priming effects among a variety of biochar-amended soils. Soil Biology and Biochemistry 43, 1169-1179.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top