1. Lin, Y.-M.; Flavin, M. T.; Cassidy, C. S.; Mar A.; Chen F.-C. Biflavonoids as Novel Antituberculosis Agents. Bioorg. Med. Chem. Lett. 2001, 11, 2101–2104.
2. Renau, T. E.; Sanchez, J. P.; Shapiro, M. A.; Dever, J. A.; Gracheck, S. J.; Domagala, J. M. Effect of Lipophilicity at N-1 on Activity of Fluoroquinolones against Mycobacteria. J. Med. Chem. 1995, 38, 2974-2977.
3. Ji, b.; Lounis N.; Chantal T. P.; Gresset, J.; In Vitro and In Vivo Activities of Levofloxacin against Mycobacterium tuberculosis. Antimicrob. Agents Chemother. 1995, 39, 1341-1344.
4. Hooper, D. C. Mechanisms of Action and Resistance of Older and Newer Fluoroquinolones, Clin. Infect. Dis. 2000, 31(suppl. 2): 24-28.
5. Drlica, K.; Zhao, X. DNA Gyrase, Topoisomerase IV, and the
4-Quinolones, Microbiol. Mol. Biol. Rev. 1997, 377-392.
6. Klopman, G.; Fercu, D.; Renau, T. E.; Jacobs, M. R. N-1-tert-Butyl-
Substituted Quinolones: In Vitro Anti-Mycobacterium avium Activities and Structure-ActivityRelationship Studies. Antimicrob. Agents Chemother. 1996, 40, 2637-2643.
7. Andries1, K.; Verhasselt, P.; Guillemont, J.; Gohlmann1, W. H.; Neefs1, J. M..; Winkler1, H.; Gestel, J. V.; Timmerman1, P.; Zhu, M.; Lee, E; Williams, P.; Chaffoy, D.; Huitric, E.; Hoffner, S. A Diarylquinoline Drug Active on the ATP Synthase of Mycobacterium tuberculosis Science. 2005, 307, 223-227.
8. L. G. Dover.; Coxon, G. D. Current Status and Research Strategies in Tuberculosis Drug Development. J. Med. Chem. 2011, 54, 6157–6165.
9. Tangallapally, R. P.; Yendapally, R.; Lee, R. E.; Hevener, K.; Jones, V. C.; Lenaerts, J. M.; McNeil, M. R.; Wang, Y.; Franzblau, S.; Lee, R. Synthesis and Evaluation of Nitrofuranylamides as Novel Antituberculosis Agents. J. Med. Chem. 2004, 47, 5276–5283.
10. Domıngueza, J. N.; Charrisa, J. E.; Loboa, G.; Sayyed, S.; Domınguezb, N. G.; Morenob, M. M.; Riggionec F. ; Sanchezd, E. ; Olsone, J.; Rosenthale, P. J. Synthesis of quinolinyl chalcones and evaluation of their antimalarial activity. Euro. J. Med. Chem. 2001, 36, 555–560.
11. Ram, S. U.; Santosh, V. L.; Lahore, A. Y.; Sayyed, S. S.; Dixit, D. S.; Jyoti, C. Conformationally-constrained indeno[2,1-c]quinolines – a new class of anti-mycobacterial agents. Org. Biomol. Chem. 2010, 8, 2180–2197.
12. K.D. Thomas.; Airody, V. A.; Telkar, S.; Sayyed, S.; Imran, H. C.; Riaz, M.; Nishith K. P. ; Guru Rowd, E. S. Design, synthesis and docking studies of new quinoline-3-carbohydrazide derivatives as antitubercular agents. Euro. J. Med. Chem. 2011, 46, 5283-5292.
13.Boechat, N; Ferreira, V. F.; Ferreira, S. B.; Lourdes, G. M. Novel 1,2,3-Triazole Derivatives for Use against Mybacterium tuberculosis H37Rv (ATCC 27294) Strain. J. Med. Chem. 2011, 54, 5988-5999.
14. Asao, T.; Okazaki, S.; Wakita, S.; Utsuki, T.; Yamada, Y. Preparation of indenoquinoline derivatives and analogs as antitumor agents. JP 1997,09143166 A2.
15. Anzini, M.; Cappelli, A.; Vomero, S. Synthesis of 6-(4-methyl-1-
piperazinyl)-7H-indeno[2,1-c]quinoline derivatives as potential 5-HT receptor ligands. J.Heterocyclic Chem. 1991, 28, 1809-1812.
16. Xiao, Z.; Waters, N. C.; Woodard C. L.; Li, Z.; Li, P. K. Design and synthesis of pfmrk inhibitors as potential antimalarial agents. Bioorg. Med. Chem. Lett. 2001, 11, 2875-2878.
17. Tseng, C. H.; Chen, Y. L.; Chung, K. Y.; Cheng, C. M.; Wang, C. H.; Tseng, C. C. Synthesis and antiproliferative evaluation of 6-arylindeno
[1,2-c]quinoline derivatives. Bioorg. Med. Chem. 2009, 17, 7465–7476.
18. Borsche, S. Justus Liebigs Ann. Chem. 1937, 532, 146-152.
19. A. L. Collins, G. F. Scott, Antimicrobial Agents and Chemotherapy, 1997, 41, 1004.
20. 郭育綺(2008)蓮子有效成分對於自體性免疫疾病老鼠之免疫藥理 活性評估。中國藥年報,第26期,第2冊,113-158頁。