跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.134) 您好!臺灣時間:2025/11/21 00:27
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:謝承凌
論文名稱:基於證據理論之數據遺失後決策更新研究
論文名稱(外文):A Study on the Decision Refinement after Losing Data based on Evidence Theory
指導教授:蔡育仁蔡育仁引用關係
學位類別:碩士
校院名稱:國立清華大學
系所名稱:通訊工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:英文
論文頁數:42
中文關鍵詞:證據理論數據遺失
相關次數:
  • 被引用被引用:0
  • 點閱點閱:433
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在本篇論文裡,我們將討論分析一個檢測理論的議題:如何在失去資料後重新做決策。考慮一個統計假設檢定,一開始經由某些收集到的資訊做出一個二位元的最佳化判斷,但後來部分的資訊不幸地丟失了,換句話說,只剩下倖存的數據與先前的二位元決定,此時我們需要重新取得決策。該怎麼做才是最好的決定?失去資料後的重新決策這類的問題在日常生活中顯而易見,所以容易被廣泛的應用。論文中提出了一個新穎的檢測方式,利用 Dempster-Shafer (D-S) 理論,又稱證據理論,來解決上述的問題。
證據理論類似人類的決策邏輯,能夠綜合考慮多方資訊且具有處理"不確定"訊息的特性;透過證據理論,我們可以設定對證據的信任度並結合證據來做出決策,同時我們也利用權重的分配來提高決策性能。
中文摘要 i
ABSTRACT ii
誌謝 iii
CONTENTS iv
LIST OF FIGURES vi
LIST OF TABLES viii
Chapter 1 Introduction 1
Chapter 2 Background Knowledge 4
2.1 Neyman-Pearson Criterion 4
2.2 Problem Formulate 5
2.3 Structure of the Optimal NP Decision Maker 7
2.4 Demspter-Shafer Theory 10
Chapter 3 Proposed Detector Utilizing D-S Theory of Evidence 13
3.1 Specific Decision Problem of Practical Interest: The Gaussian Shift-in-mean 13
3.2 Basic Probability Assignment Estimation 16
3.2.1 BPA Estimation of X Part 16
3.2.2 BPA Estimation of δ Part 20
3.3 The Improved D-S Fusion Algorithm 22
3.3.1 Evaluation of Weighted Factors 23
3.3.2 Credibility Combination Based on D-S Theory 25
3.3.3 Decision Strategy 26
3.3.4 Analysis and Restriction 27
Chapter 4 Simulation Results and Discussions 30
4.1 Comparison of ROC Curves with Different SNR 30
4.2 Comparison of ROC Curves with Different Sample Number 34
4.3 The Relation between the Significance Level and the False Alarm Probability 36
Chapter 5 Conclusion and Future Research 38
REFERENCES 40
[1] S. Marano, V. Matta, and F. Mazzarella, “Refining Decisions After Losing Data: The Unlucky Broker Problem,” IEEE Trans. on Signal Processing, vol.58, no.4, April 2010.
[2] S. Marano, V. Matta, and F. Mazzarella, “The Bayesian Unlucky Broker,” 18th European Signal Processing Conference, Aalborg, Denmark, August 2010.
[3] G. Shafer, A Mathematical Theory of Evidence, Princeton, NJ: Princeton Univ. Press, 1976.
[4] T. Denoeux, “A Neural Network Classifier Based on Dempster-Shafer Theory,” IEEE Trans. on Systems, Man and Cybernetics, vol.30, no.2, pp.131-150, Mar. 2000.
[5] B.V. Dasarathy, “Decision Fusion Strategies in Multi-sensor Environments,” IEEE Trans. on Systems, Man and Cybernetics, vol.21, no.5, pp.1140-1154, Sep/Oct. 1991.
[6] Hongwei Zhu, Basir O., and Karray F., “Data Fusion for Pattern Classification via the Dempster-Shafer Evidence Theory”, IEEE International Conference on Systems, Man and Cybernetics, vol.7, Oct. 2002.
[7] Huadong Wu, Siegel, M., Stiefelhagen, R., and Jie Yang,“Sensor Fusion Using Dempster-Shafer Theory”, IEEE Instrumentation and Measurement Technology Conference, Vol.1 7-12, May 2002.
[8] Qing Yan, and Blum, R.S., “Distributed Signal Detection Under The Neyman-Pearson Criterion,” IEEE Trans. on Information Theory, vol.47, pp. 1368-1377, May 2001.
[9] H. L. Van Trees, Detection, Estimation, and Modulation Theory. Part I. New York: Wiley, 2001.
[10] H. V. Poor, An Introduction to Signal Detection and Estimation. NewYork: Springer-Verlag, 1988.
[11] S. M. Kay, Fundamentals of Statistical Signal Processing, Volume II: Detection Theory. Englewood Cliffs, NJ: Prentice-Hall, 1998.
[12] Karl Sentz and Scott Ferson, “Combination of Evidence in Dempster-Shafer Theory”, Sandia Report SAND2002-0835 Unlimited Release, 13-15, 2002.
[13] P. Smets, “The combination of evidence in the transferable belief model,” IEEE Trans. Pattern Anal. Machine Intell., vol. 12, pp. 447–458, 1990.
[14] S. L. Hegarat-Mascle, D. Richard, and C. Ottle, “Multi-scale data fusion using Demspter-Shafer evidence theory,” Integrated Computer-Aided Engineering, vol. 10, pp. 9–22, 2003.
[15] D.L. Sackett, “Why randomized controlled trials fail but needn't: 2. Failure to employ physiological statistics, or the only formula a clinician-trialist is ever likely to need (or understand!),” CMAJ 165 (9): pp.1226-1237, Oct. 2001.
[16] Z. Wentao, F. Tao, and J. Yan, “Data fusion using improved Dempster Shafer evidence theory for vehicle detection,” in Proc. 4th Int. Conf. on Fuzzy Systems and Knowledge Discovery, vol. 1, Aug. 2007, pp. 487-491.
[17] Hongyu Chen, , and Jian Liu, “Cooperative spectrum sensing based on double threshold detection and Dempster-Shafer theory’’, Communication Technology (ICCT), 2010 12th IEEE International Conference on, pp. 1212-1215, Nov. 2010.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
無相關期刊
 
1. 在雙重衰褪通道下基於EM之通道及都卜勒擴展聯合估計法
2. 正交分頻多工系統中基於壓縮感知通道估測之領航信號樣式設計準則研究
3. 適用於正交分頻多工系統稀疏通道估計應用之基底縮減領航信號樣式設計研究
4. 無線感測網路中利用決策回授與基於證據理論局部融合之分散式估計方法
5. 非完美通道估測環境下非正交多重接取系統之使用者資料傳輸率暨功率分配技術研究
6. 無線感測網路分散式估計之節能循序訊息累積方法研究
7. 無線串流傳輸系統下基於網路編碼之混合式自動重送請求協定研究
8. 解碼後傳送合作式網路下針對多重解析度服務之階層式調變研究
9. 在使用空間調變技術的巨量天線多重輸入多重輸出系統利用壓縮感測技術進行稀疏通道盲估計之研究
10. 在感知無線電網路中利用正交分頻多工訊號時域相關特性之頻譜感測技術研究
11. 基於內容管理伺服器與Linux嵌入系統之MQTT協定實現–以圖書館無線導覽系統為例
12. 基於Android智慧型裝置與Linux嵌入系統之藍牙OBEX協定實現–以圖書館無線導覽系統為例
13. 具干擾消除合作式網路中使用基於階層式調變之接替中繼傳輸協定研究
14. 適用於 Android 智慧型手機之用戶定位暨緊急呼救應用軟體實作
15. 基於服務品質限制下非正交多重接取系統之使用者分組暨功率分配技術研究