跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.59) 您好!臺灣時間:2025/10/15 17:33
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:郭美娟
研究生(外文):Mei-Chuan Kuo
論文名稱:電漿聚合法對聚縮醛/聚四氟乙烯複合材料界面改質之研究
論文名稱(外文):The Study on the Interface Modification of Polyacetal (POM) / Polytetrafluoroethylene (PTFE) Composites by Plasma Polymerization
指導教授:黃繼遠
指導教授(外文):Chi-Yuan Huang
學位類別:碩士
校院名稱:大同工學院
系所名稱:材料工程研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:1999
畢業學年度:87
語文別:英文
論文頁數:107
中文關鍵詞:丙烯醯胺電漿接枝聚合UV光接枝衝擊強度摩擦係數磨耗因子機械性質動態機械分析
外文關鍵詞:acrylamide(AAm)plasma grafting polymerizationUV light graftingimpact strengthfrictional coefficientTaber wear factormechanic proportydynamic mechanic analysis(DMA)
相關次數:
  • 被引用被引用:1
  • 點閱點閱:162
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究以改善POM與PTFE的相容性,是以表面改質的方式,使鐵氟龍(PTFE)纖維表面接枝Acrylamide(AAm),進而降低POM/PTFE複材的摩擦係數與增加耐磨耗的特性。並比較以UV光接枝方式與電漿接枝方式在摩擦係數、耐磨耗、機械性質與DMA上改善的效果。由實驗結果可知,POM的摩擦係數為0.183,在加入15wt%電漿改質鐵氟龍纖維後,摩擦係數變為0.174,但POM加入經AAm改質的鐵氟龍纖維15wt%後,最小值可達0.159。且在衝擊強度上,POM的值為4.9kg-cm/cm,在加入15wt%鐵氟龍纖維後,衝擊強度變為6.1kg-cm/cm,但POM加入經AAm改質的鐵氟龍纖維15wt%後,最大值可達9.3kg-cm/cm。由此可知以電漿接枝聚合的界面改質是可行的。本實驗中最合適的條件為以20wt%AAm接枝10分鐘, POM與AAm-g-PPTFE纖維的摻合重量百分比為85/15。
In this investigation, the AAm was grafted onto the surface of plasma treated PTFE (PPTFE) by using plasma grafting method AAm-g(plasma)-PPTFE or UV grafting method AAm-g(UV)-PPTFE for increasing the compatibility between POM and PTFE. The frictional coefficient and the Taber wear factor would be decreased as adding the AAm-g-PPTFE into POM. On the other hand, comparing the effect of plasma grafting method with UV grafting method on the frictional coefficient, Taber wear factor, mechanical properties and DMA of composites. The frictional coefficient of POM was 0.183 and the impact strength was 4.9kg-cm/cm. However, as adding 15wt%PTFE into POM, the frictional coefficient of composites was 0.174 and the impact strength was 6.1kg-cm/cm. Furthermore, as adding 15wt%AAm-g-PPTFE into POM, the frictional coefficient was down to 0.159, the impact strength was increased to 9.3kg-cm/cm. From above description, it could be known that the plasma grafting method was a useful method to modify the interface between POM and PTFE. The suitable grafting time was 10min and the grafting concentration of AAm was 20wt%. For the cost concerning, adding 15wt% AAm —g-PPTFE into POM was concerned.
List of Figures
List of Tables
Chapter 1 Introduction
1.1 Polyacetal (POM
1.2 Polytetrafluoroethylene (PTFE
1.3 Short Fiber Composites
1.3.1 Short-Fiber Reinforced Thermoplastics (SFRP)
1.3.2 Microstructure of SFRP
1.3.3 The Mechanical Properties of Short-Fiber Reinforced Composites
1.3.3.1 Tensile Strength
1.3.3.2 Impact Strength
1.4 Mechanisms of Friction
1.5 Mechanisms of Wear
1.6 Surface Treatments of PTFE
1.7 Plasma
1.8 Plasma Treatment
1.9 Surface Grafting
1.10 Plasma Graft Polymerization
1.11 Dynamic Mechanical Analysis
Chapter 2 Experiment
2.1 Flowchart
2.2 Materials
2.3 Instruments
2.4 Experiment Techniques
2.4.1. Plasma Treatedment
2.4.1.1. Argon Plasma Treatment
2.4.1.2. Plasma Treatment of Grafting Polymerization
2.4.1.3. UV Light Grafting Polymerization
2.4.2. SEM
2.4.3. Blending
2.4.4. Compressing Molding
2.4.5. Frictional Coefficient
2.4.6. Taber Wear Factor
2.4.7. Mechanical Properties
2.4.8. Dynamic Mechanical Measurement
Chapter 3 Results and Discussion
3.1 Surface Modification of PTFE Fiber
3.1.1 ESCA
3.1.2 SEM
3.1.2.1 The Effects of Argon Plasma Treatment
3.1.2.2 The Effects of Plasma Grafting Polymerization
3.1.2.3 The Effects of UV and Plasma Polymerization
3.2 The Effects of Plasma Treatment on Properties of Composites
3.2.1. Impact Strength
3.2.2. Stress-Strain Measurement
3.2.3. Frictional Coefficient
3.2.4. Taber Wear Factor
3.2.5. DMA
Chapter 4 Conclusions
References
1. Plastic Engineering, Engineering resins primer, December, 30, 20 (1974).
2. R. E. Estell, Plastic Design and Processing 26, 35 (1971).
3. W. Y. Chiang and C. Y. Huang, J. Chin. I. Ch. E. 22, 291 (1991).
4. W. Y. Chiang and C. Y. Huang, Angew. Makromol. Chem. 196, 21 (1992).
5. W. Y. Chiang and C. Y. Huang, Eur. Polym. J. 29(6), 834 (1992).
6. W. Y. Chiang and C. Y. Huang, J. Appl. Polym. Sci. 47, 577 (1993).
7. Y. Yamaguchi, I. Sekiguchi, K. Sugiyama, and N. Suzuki, Kogakuin Daigaku Kenkyu Hokoku 31, 26 (1972).
8. Y. Okubo, Y. Yamaguchi, and I. Sekiguchi, Kogakuin Daigaku Kenkyu Hokoku 53, 22 (1982).
9. Taiho Kogyo Co., Ltd., Jpn. Kokai Tokkyo Koho, JP 60, 72, 952.
10. K. Ziemianski, Trybologia 19(6), 4 (1988).
11. I. Sekiguchi, Y. Yamaguchi, Y. Okubo, H. Kondo, and S. Onda, Kogakuin Daigaku Kenkyu Hokoku 64, 49 (1988).
12. K. Tanaka, Y. Yamada, J. Synth. Lubr. 5(2), 115 (1988).
13. H. Endo, M. Umeda, Jpn. Kokai Tokkyo Koho, JP 62, 54, 753.
14. W. Y. Chiang and C. Y. Huang, Composite Polym. 4, 251 (1991).
15. S. A. Brown, Polym. Mater. Sci. Eng. 53, 494 (1985).
16. V. K. Jain, Wear 92(2), 279 (1983).
17. V. K. Jain, Wear Mater. 583 (1983).
18. K. Tanaka, J. Lubr. Technol. 99(4), 408 (1977).
19. T. Okada, Jpn. Plast. Age. 15, 22 (1977).
20. J. I. Yamaki, Kobunshi Ronbunshu 33(6), 347 (1976).
21. J. I. Yamaki, Kobunshi Ronbunshu 33(7), 367 (1976).
22. M. Wagu, M. Hino, Japan Kokai 74, 108, 394.
23. H. Takahashi, K. Iwata, Jpn. Kokai Tokkyo Koho, JP 63, 179, 958.
24. T. Matsuo, S. Mori, N. Yokota, Jpn. Kokai Tokkyo Koho, JP 61, 12, 743.
25. H. Yamaguchi, Y. Tsuji, K. Tsukada, Jpn. Kokai Tokkyo Koho, JP 60, 235, 767.
26. Sumitomo Electric Industries Ltd., Jpn. Kokai Tokkyo Koho, JP 60, 58, 466.
27. Sumitomo Electric Industries Ltd., Jpn. Kokai Tokkyo Koho, JP 82, 42, 764.
28. K. R. Waston, Y. T. Wu, and P. G. Riewald, Plast. Eng. 45(3), 83 (1989).
29. G. Parlow, Gummi, Fasern, Kunstst. 41(12), 608 (1988).
30. A. Kitamura and M. Kawamura, Jpn. Kokai Tokkyo Koho, JP 61, 76, 594.
31. Bando Chem. Industries, Ltd., Jpn. Kokai Tokkyo Koho, JP 59, 179, 653.
32. Bando Chem. Industries, Ltd., Jpn. Kokai Tokkyo Koho, JP 58, 13, 226.
33. Y. Yamaguchi, T. Kitsukawa, and H. Ouchi, Kogakuin Daigaku Kenkyu Hokoku 63, 45 (1987).
34. K. Suzuki and M. Ogahama, Jpn. Kokai Tokkyo Koho, JP 62, 04, 748.
35. O. Jinno and T. Fukuoka, Jpn. Kokai Tokkyo Koho, JP 62, 10, 165.
36. C. Y. Huang, R. S. Chou, The Study on The Interface Modification of Polyactal/Polytetrafluoroethylene Composites, Thesis, Tatung Institute of Technology (1992).
37. 陳玉惠, 林士偉, 聚縮醛/改質鐵氟龍分子間作用力之研究, 碩士論文, 中原大學 (1997).
38. R. J. Plunkett, U. S. Pat. 2, 230, 654 (1941).
39. L. E. Nielsen, in Mechanical Properties of Polymers and Composites, Marcel Dekker, Inc., 1974, Chapter 8.
40. F. L. Matthews and R. D. Rawlings, in Composite Materials: Engineering and Science, Chapman & Hall, 1993, Chapter 10.
41. R. B. Seymour, Polym. Plast. Technol. & Eng. 7, 49 (1976).
42. K. Friedrich, Ed., Application of Fracture Mechanics to Composite Materials, Chapter 6, Z. Eliezer, in Friction and Wear of Metal Matrix-Graphite Fiber Composites, Elsevier, 1989.
43. D. W. Clegg and A. A. Collyer, in Mechanical Properties of Reinforced Thermoplastics, Elsevier, 1986.
44. B. Chung and C. Cohen, Polym. Eng. & Sci. 25, 1001 (1985).
45. M. Sanou, B. Chung, and C. Cohen, Polym. Eng. & Sci. 25, 1008 (1985).
46. M. R. Kamal, E. Chu, P. G. Lafleur, and M. E. Ryan, Polym. Eng. & Sci. 26, 190 (1986).
47. S. H. Emerman, Polym. Eng. & Sci. 27, 1105 (1987).
48. Z. Tadmor, J. Appl. Polym. Sci. 18, 1753 (1974).
49. R. P. Sheldon, in Composite Polymeric Materials, Elsevier, 1982, Chapter 3.
50. F. L. Matthew and R. D. Rawlings, in Composite Materials: Engineering and Science, Chapman & Hall, 1993, Chapter 11.
51. K. Friedrich, Ed., Application of Fracture Mechanics to Composite Materials, Chapter 1, H. Czichos, in Introduction to Friction and Wear, Elsevier, 1989.
52. D. Tabor, Trans. ASME 103, 169 (1981).
53. H. Czichous, Umschau 71. 116 (1971).
54. N. P. Suh, in Tribological Technology, Vol. I, Ed. P. Senholzi, Martinus Nijhoff, The Hague, 1982, pp. 37-208.
55. G. P. Koo, in Fluoropolymers, Ed. L. A. Wall, Wiley Interscience, New York (1972).
56. F. Mark and W. G. Gaylord, Eds., in Encyclopedia of Polymer Science and Technology, 13, Wiley, New York, 1970.
57. W. A. Zisman, ACS Adv. Chem. Ser. 43, 9 (1964).
58. M. W. Pascoe, Tribology, 184 (1973).
59. M. O. W. Richards and M. W. Pascoe, in Advances in Polymer Friction Wear, 5A, L. H. Lee, Ed. Plenum Press, New York, 123 (1974).
60. Minnesota Mining and Manufacture Co., Brit. Patent 765, 284 (1957).
61. G. Rappaport, U. S. Patent 2, 809, 130 (1957).
62. D. M. Brewis, R. H. Dahm, and M. B. Konieczko, Makromol. Chem. 43, 191 (1975).
63. R. J. Purvis and W. R. Beck, U. S. Patent 2, 780, 063 (1957).
64. J. Jansta, F. P. Dousek, and J. Riha, J. Electroanal. Chem. 38, 445 (1972).
65. J. Jansta, F. P. Dousek, and J. Riha, J. Appl. Polym. Sci. 19, 3201 (1975).
66. F. W. Ryan, G. M. Sessler, J. E. West, and H. Schonhorn, J. Appl. Polym. Sci. 17, 3199 (1973).
67. G. M. Gosedge, Ph. D. Thesis, University College of Wales (1979).
68. P. Cadman and G. M. Gosedge, J. Mat. Sci. 14, 2672 (1979).
69. R. K. Wells, M. E. Ryan, and J. P. S. Badyal, J. Phys. Chem. 97, 12879 (1993).
70. H. Kudoh, T. Sasuga, and T. Seguchi, Polymer 37, 16, 3737 (1993).
71. J. Sun, Y. Zhang, and X. Zhong, Polymer 35, 13, 2881 (1994).
72. R. F. Roberts, F. W. Tyan, H. Schonohorn, G. M. Sessler, and J. E. Wert, J. Appl. Polym. Sci. 20, 255 (1976).
73. S. L. Vogel and H. Schonhorn, J. Appl. Polym. Sci. 23, 2493 (1979).
74. H. Schonohorn and R. H. Harvben, J. Appl. Polym. Sci. 11, 1461 (1967).
75. D. Youxian, H. J. Griesser, Albert W. H. Mau, Robert Schmidt, and John Liesegang, Polymer 32, 6, 1126 (1991).
76. H. Brecht, F. Mayer, and H. Binder, Makromol. Chem. 33, 89 (1973).
77. D. W. Dwight and W. M. Riggs, J. Electr. Spectrosc. Rel. Phenom. 5, 447 (1974).
78. H. Yasuda, H. C. Marsh, S. Brandt, and C. H. Reilley, J. Polym. Sci. Polym. Chem., Ed. 15, 991 (1977).
79. H. Yasuda and G. C. Marsh, Am. Chem. Soc. Poly. Prepr. 16, 142 (1975).
80. T. Hirotsu and S. Ohnishi, J. Adhesion 11, 57 (1980).
81. G. C. S. Collins, A. C. Lowe, and D. Nicholas, Eur. Polym. J. 9, 1173 (1973).
82. R. H. Hansen and H. Schonohorn, Polym. Lett. 4, 203 (1966).
83. H. Schonohorn, F. W. Ryan, and R. H. Hansen, J. Adhesion 2, 93 (1970).
84. J. R. Hollahan, B. B. Stafford, R. D. Falls, and S. T. Payne, J. Polym. Sci. 13, 807 (1969).
85. C. M. Chan, in Polymer Surface Modification and Characterization, Hanser/Gardner, New York, 1994, Chapter 6.
86. D. T. Clark, W. J. Feast, W. K. R. Musgrave, and I. Ritchie, J. Polym. Sci. Polym. Chem. Ed. 13, 857 (1975).
87. R. d’Agostino, F. Cramarossa, and F. Fracassi, in Plasma Deposition, Treatment, and Etching of Polymers, Ed. R. d’Agostino, Academic Press, New York, 1990, pp. 95-162.
88. K. Asfardjani, Y. Segui, Y. Aurelle, and N. Abidine, J. Appl. Polym. Sci. 43, 271 (1991).
89. C. M. Chan, in Polymer Surface Modification and Characterization, Hanser/Gardner, New York, 1994, Chapter 5.
90. A. S. Hoffman, Adv. Polym. Sci. 57, 142 (1984).
91. A. S. Hoffman, J. Appl. Polym. Appl. Polym. Symp. 42, 251 (1988).
92. H. Inou and S. Kohama, J. Appl. Polym. Sci. 29, 877 (1984).
93. C. G. Beddows, H. G. Gill, and J. T. Guthrie, Biotechnol. Bioeng. 27, 579 (1985).
94. P. Dorwjanyn and J. L. Garnett, Polym. Mater. Sci. Eng. 57, 278 (1987).
95. J. L. Garnett, S. V. Jankiewicz, M. A. Long, and D. F. Sangster, Radiat. Phys. Chem. 27, 301 (1986).
96. K. Allmer, J. Hilborn, P. H. Larsson, A. Hult, and B. Ranby, J. Polym. Sci. Polym. Chem. Ed. 28, 173 (1990).
97. Y. Uyama and Y. Ikada, J. Appl. Polym. Sci. 41, 619 (1990).
98. K. Allmer, A. Hult, and B. Ranby, J. Polym. Sci. Polym. Chem. Ed. 27, 3405 (1989).
99. K. Allmer, A. Hult, and B. Ranby, J. Polym. Sci. Polym. Chem. Ed. 27, 3419 (1989).
100. C. H. Hoyle, in Radiation Curing of Polymeric Materials, Vol. 417, Ed. C. E. Hoyle and J. E. Kinstle, ACS Symposium Series, Washington, DC, 1990, p. 1.
101. B. Mattson and B. Stenberg, J. Appl. Polym. Sci. 50, 1247 (1993).
102. T. Ko and S. T. Cooper, J. Appl. Polym. Sci. 47, 1601 (1993).
103. F. Poncin-Epaillard, B. Chevet, and J. C. Brosse, J. Appl. Polym. Sci. 53, 1291 (1994).
104. N. Inagaki, in Plasma Surface Modification and Plasma Polymerization, THCNOMIC, chapter 3(1996).
105. H.F. Mark and N.G. Gaylord, Eds., Encyclopedia of polymer Science and Technology, John Wiley, New York, P. 702(1969).
106. E.E. Kunhardt and L.H. Luessen, Electrical Breakdown and Discharge in Gasses, Fundamental Processes and Breakdown, P395(1981).
107. 謝國煌,陳原振,曾勝茂。科儀新知第十八卷第四期。86, 2.
108. S. Wu, in Polymer Interface and Adhesion, MECEL DEKER, INC., New York, 1982, pp. 280-283.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top