跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.176) 您好!臺灣時間:2025/09/07 05:07
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:洪德鎧
研究生(外文):De kai Hung
論文名稱:自我乳化之薑黃素經皮傳送研究
論文名稱(外文):Self-microemulsifying system for curcumin transdermal delivery
指導教授:劉繼賢
指導教授(外文):C. H. Liu
學位類別:碩士
校院名稱:長庚大學
系所名稱:生化與生醫工程研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
論文頁數:107
中文關鍵詞:化學促進劑微乳液薑黃素經皮輸藥
外文關鍵詞:Chemical enhancerMicroemulsionCurcuminTransdermal delivery
相關次數:
  • 被引用被引用:4
  • 點閱點閱:481
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
脂溶性藥物-薑黃素有溶解度低、穩定性差和口服生物可利用率低的缺點,利用微乳液的劑型配合經皮輸藥系統可以克服上述缺點,提升藥物治療效果。利用經皮輸藥系統的途徑,最大的阻礙為皮膚的角質層蔽障,要克服皮膚的角質層蔽障,目前已經有物理和化學的方式來增加藥物的穿透量。本研究利用化學方式篩選多種促進劑,結果顯示發現油相limonene、geraniol、Isopropyl myristate (IPM)、醇類isopropanol (IPA)和陽離子界面活性劑、Dimethyl dioctadecyl ammonium bromide (DDAB)、N-cetyl-N,N,N,trimethyl amoniumbromid (CTAB)具有好的經皮吸收促進效果,利用此配方搭配6 % tween 80界面活性劑震盪可以得到約21.59 nm 之Microemulsion.A (ME.A)和limonene、geraniol、Isopropyl myristate搭配6 % Tween 80 可以得到93.32 nm之Microemulsion.E (ME.E)。利用體外穿透裝置24 hr薑黃素藥物總穿透量Microemulsion.A (ME.A)可以達98 μg/cm2,Microemulsion.E (ME.E)可以達82 μg/cm2,示差掃描量熱儀 (DCS)也證實微乳液是經由細胞間質脂質穿過皮膚。當自我乳化微乳液配方確定後,則進行細胞刺激性、溶血實驗和皮膚組織切片及儲存安定性實驗之探討。在油酸微乳液配方D (OA.D)上,利用體外穿透裝置24 hr薑黃素藥物總穿透量達27μg/cm2 ,實驗之結果證明開發之微乳液具有一定安定性且無毒性,有效提高脂溶性藥物溶解度並且增加經皮穿透效率。
The lipophilic drug, curcumin, has low oral bioavailability because of its low solubility and poor stability. By using microemulsion via the transdermal route, a new delivery system was developed to improve curcumin’s delivery. Stratum corneum in skin is the main obstacle in transdermal drug delivery systems. To overcome the stratum corneum barrier, several physical and chemical means to increase the drug penetration have been studied. In this study, a variety of chemical enhancers were screened with the help of Plackett Burman design to evaluate their effects on curcumin transderaml delivery. We found that limonene, geraniol, isopropyl myristate (IPM), isopropanol (IPA), and Dimethyl dioctadecyl ammonium bromide (DDAB)、N-cetyl-N,N,N, trimethyl amoniumbromid (CTAB) had good enhance effects on the percutaneous absorption of curcumin.
Microemulsion.A (ME.A) containing limonene, geraniol, isopropyl myristate isopropanol, DDAB, CTAB, and 6 % tween 80 has a nano-scale particle size (21 nm) and a transparent appearance. Microemulsion.E (ME.E) containing limonene, geraniol, isopropyl myristate, and 6 % tween 80 has a nano-scale particle size (93 nm). By using the in vitro Franz diffusion cells, curcumin loaded Microemulsion.A (ME.A) can penetrate the pig ear skin at a flux up to 98 μg/cm2 in 24 hrs. Microemulsion.E (ME.E) can reach a 82 μg/cm2 in 24 hrs. The DSC thermogram result showed that the intracellular transport is possible mechanism of ME.A and ME.E. We also used cytoxicity irritation test and hemolysis of red blood cells to evaluate the microemulsion(ME) toxicity. These results showed that the developed ME was non-toxicity and stable. However, Oleic acid microemulsion D (OA.D) had a transdermal delivery rate of 27 μg/cm2 in 24 hrs. In our transdermal study. This new delivery system has the potential to be applied to other lipophilic durgs to enhance their solubility and delivery efficiency.

摘 要 i
Abstract vi
目 錄 viii
圖目錄 xi
表目錄 xiv
第一章 研究動機 1
第二章 緒論 3
2-1 皮膚介紹及經皮輸藥 3
2-1-1 皮膚結構 3
2-1-2 藥物穿透皮膚途徑 5
2-1-3 藥物於皮膚之作用部位 6
2-1-4皮膚製劑的改善方式 7
2-1-5 促進劑增加經皮吸收之數學模式 13
2-1-6 經皮藥物傳遞的優點和限制 17
2-2 薑黃素 18
2-2-1 薑黃素簡介 18
2-2-2 薑黃素的物理化學性質 19
2-2-3 薑黃素於臨床上的研究 19
2-2-4 薑黃素所面臨個問題 22
2-3 劑型介紹 25
2-3-1微乳液簡介 25
2-3-2微乳液之熱力學穩定性 25
2-3-3 微乳液型態 26
2-3-4 微乳液應用於經皮輸藥優點 28
第三章 材料和儀器設備 29
3-1 材料 29
3-2 儀器設備 30
第四章 實驗方法 31
4-1 實驗動物皮膚製備 31
4-2 體外穿透裝置及試驗方式 31
4-3 豬皮薑黃素濃度測量 32
4-4油酸微乳液擬三項圖繪製 33
4-5 油酸微乳液製作方式 33
4-6 自我乳化微乳液擬三項圖繪製 34
4-7 自我乳化微乳液製作方式 35
4-8 高效液相層析儀分析薑黃素含量 35
4-8-1 薑黃素於HPLC分析條件 35
4-8-2 薑黃素檢量線製作 36
4-9 數據統計及分析 36
4-10 細胞刺激性實驗 37
4-11 RBC試驗 37
4-11-1製備紅血球混合溶液 37
4-11-2溶血實驗 37
4-12 粒徑大小及粒徑分佈指數測量 38
4-13 表面電位測定 38
4-14 共軛焦顯微鏡分析條件 39
4-15 穿透式電子顯微鏡分析條件 39
4-16示差掃描量熱儀(DSC)分析條件 40
4-17皮膚組織石蠟包埋染色切片 40
4-18 促進劑篩選 40
第五章 結果與討論 44
5-1 油酸微乳液劑型 44
5-1-1 油酸微乳液三相圖 45
5-1-2 油酸微乳液經皮穿透 46
5-1-3 油酸微乳液細胞刺激性 48
5-2 化學促進劑篩選 49
5-3 化學促進劑第二次篩選 53
5-4自我乳化微乳液劑型 56
5-4-1 ME.1-ME.5物化性質 56
5-4-2 ME.A-ME.H物化性質 57
5-4-3 ME.A三相圖 60
5-4-4 ME.A、ME.E穿透式電子顯微鏡觀察微乳液型態 61
5-4-5 ME.A ME.E載體安定性實驗 62
5-4-6 不同比例tween 80 微乳液經皮穿透 64
5-4-7 不同配方之微乳液經皮穿透 66
5-4-8 ME.A ME.E半透膜藥物釋放模式 72
5-4-9 ME.A ME.E於豬皮藥物釋放模式 73
5-4-10 ME.A包覆不同薑黃素含量穿透試驗 75
5-4-11 ME.A、ME.E細胞刺激性實驗 77
5-4-12 ME.A、ME.E溶血率實驗 78
5-4-13共軛焦顯微鏡分析ME.A、ME.E載體皮內藥物分佈 79
5-4-14 DSC觀察ME.A、ME.E載體藥物穿透形式 84
5-4-15 H&E豬皮組織染色圖 86
結論 87
參考資料 89


圖目錄
圖 2-1 人類皮膚縱剖圖 [5] 4
圖 2-2 藥物穿透角質層模式[9] 6
圖 2-3 藥物穿透的疏水和親水路徑及促進劑作用模式[9] 7
圖 2-4 脂肪酸結構[15] 8
圖 2-5 常見萜烯類結構[17] 11
圖 2-6穩定狀態下藥物穿透生物屏障之擴散圖 13
圖 2-7 薑黃素的分離和萃取過程[22] 18
圖 2-8 薑黃素及其天然衍生物結構[23] 19
圖 2-9 薑黃素多重治療效果[21] 20
圖 2-10 薑黃素和其延伸物及代謝物[21] 23
圖 2-11 微乳液擬三相圖 [38] 27
圖 4-1 Franz diffusion cell,(a) 示意圖 (b) 實際裝置圖[44] 32
圖 4-2 薑黃素之檢量線 36
圖 5-1 油酸微乳液三相圖 45
圖 5-2 OA.1至OA.6以不同比例之油酸微乳液之穿透豬耳外側皮膚24小時累積穿透量(n=2) 。 46
圖 5-3 OA.A-OA.G以不同oleic acid及Tween 80 / ETOH比例之微乳液穿透豬耳外側皮膚24小時累積穿透量(n=2) 47
圖 5-4 OA.D細胞刺激性實驗(n=3) 48
圖 5-5 24種不同化學促進劑於 PBS/ETOH=1:1,穿透豬耳外側皮膚24小時之累積穿透量(n=2) 50
圖 5-6 24種不同化學促進劑於PBS/ETOH = 1:1 ,穿透豬耳外側皮膚24小時之累積穿透量(n=2) 50
圖 5-7 篩選過之化學促進劑於PBS/ETOH = 1:1 ,穿透豬耳外側皮膚24小時之累積穿透量(n=2) 53
圖 5-8 無包覆薑黃素和有包覆薑黃素之ME.A 58
圖 5-9 ME.A三相圖 60
圖 5-10 TEM下ME.A外觀型態 61
圖 5-11 TEM下ME.E外觀型態 61
圖 5-12 ME.A、M.E.E粒徑大小隨時間變化(n=3) 63
圖 5-13 ME.A、ME.E薑黃素量隨時間變化(n=3) 63
圖 5-14 Control、ME.1-ME.4分別為0 %、2%、4%、6%、12 % Tween 80比例之乳液穿透豬耳外側皮膚24小時累積穿透量(n=3) 65
圖 5-15 Control、ME.1-ME.4分別為0 %、2%、4%、6%、12 % Tween 80比例之乳液薑黃素模式藥物殘留於豬皮24小時累積穿透量(n=3) 65
圖 5-16 微乳液A至E,豬耳外側皮膚24小時穿透曲線(n=3) 67
圖 5-17 微乳液A至E配方比較,乳液殘留於豬皮24小時累積穿透量(n=3) 68
圖 5-18 微乳液A和F-H配方,豬耳外側皮膚24小時穿透曲線(n=3) 70
圖 5-19 微乳液A、E、F、G、H配方比較,乳液殘留於豬皮24小時累積穿透量(n=3) 71
圖 5-20 ME.A、ME.E及控制組藥物釋放(n=3) 72
圖 5-21 ME.A於豬皮之藥物釋放模式 74
圖 5-22 ME.E於豬皮之藥物釋放模式 74
圖 5-23不同薑黃素量之ME.A(n=3) 75
圖 5-24不同薑黃素量之ME.A穿透總量和濃度關係(n=3) 76
圖 5-25 ME.A、ME.E細胞刺激性實驗(n=3) 77
圖 5-26 ME.A、ME.E對紅血球溶血實驗(n=3) 78
圖 5-27 ME.A包覆薑黃素皮內螢光強度和深度關係 80
圖 5-28 A : ME.A薑黃素溶液藥物滲透於豬皮明視野B : ME.A薑黃素溶液藥物滲透於豬皮之疊圖並平均螢光。 80
圖 5-29 ME.E薑黃素溶液皮內螢光強度和深度關係 81
圖 5-30 A : ME.E薑黃素溶液藥物滲透於豬皮明視野,B : ME.E薑黃素溶液藥物滲透於豬皮之疊圖並平均螢光 81
圖 5-31 Control薑黃素溶液皮內螢光強度和深度關係 82
圖 5-32 A : Control薑黃素溶液滲透於豬皮明視野,B : Control薑黃素溶液滲透於豬皮疊圖並平均螢光。 82
圖 5-33不同配方皮內螢光強度與深度比較(n=1) 83
圖 5-34 皮膚於DSC圖譜。溫度設定30-90℃ 85
圖 5-35皮膚於DSC圖譜。溫度設定30-140℃ 85
圖 5-36 豬皮H&E組織染色切片(20X) 86



表目錄
表 2-1 萜烯類分類[17] 9
表 2-2 不同經皮促進方式比較[18] 13
表 2-3 目前進行中之薑黃素於各種疾病治療之各期臨床研究[22] 21
表 2-4 薑黃素的生體利用率[24] 23
表 2-5微乳液與乳液比較[37] 26
表 4-1 不同比例之油酸微乳液 33
表 4-2 不同oleic acid及tween 80/ETOH比例之微乳液組成 34
表 4-3 不同比例Tween 80之微乳液 35
表 4-4 不同促進劑之微乳液 35
表 4-5 Plackett Burman design不同化學促進劑篩選 41
表 4-6 Plackett Burman design化學促進劑篩選 42
表 4-7 Two Level factorial design 化學促進劑篩選 43
表 5-1 OA.1至OA.6以不同比例之油酸微乳液,其經皮穿透參數(n=2) 46
表 5-2 OA.A-OA.G以不同oleic acid及Tween 80 / ETOH比例,其經皮穿透參數(n=2) 47
表 5-3 不同化學促進劑篩選,其經皮穿透參數、薑黃素穿透總量和豬皮殘留量(n=2) 51
表 5-4 化學促進劑之經皮穿透迴歸分析 52
表 5-5 化學促進劑篩選A至P,其經皮穿透參數、薑黃素穿透總量和豬皮殘留量(n=2) 54
表 5-6 化學促進劑之經皮穿透迴歸分析 55
表 5-7 包覆薑黃素之ME.1至ME.5粒徑大小和粒徑分散指數和介面電位(n=3) 56
表 5-8 包覆薑黃素之ME.1至ME.5之物理性質(n=1) 57
表 5-9 包覆薑黃素之ME.A至ME.E粒徑大小和粒徑分散指數和介面電位(n=3) 58
表 5-10 包覆薑黃素之ME.A至ME.E之物理性質(n=1) 59
表 5-11微乳液A至E,其經皮穿透參數(n=3) 67
表 5-12微乳液A和F-H,其經皮穿透參數(n=3) 70
表 5-13不同薑黃素之ME.A,其經皮穿透參數(n=3) 76


參考資料
1. Barry BW. Methods for studying percutaneous absorption. Dermatological Formulations: Percutaneous Absorption 1983:234-295.
2. Bisset DL. Anatomy and biochemistry of the skin. Transdermal Delivery of Drugs 1987;1:29-42.
3. Michaels AS, Chandrasekaran SK, Shaw JE. Drug permeation through human skin: Theory and in vitro experimental measurement AIChE Journal 1975;21(5):985-996.
4. Barry BW. Mode of action of penetration enhancers in human skin. Journal of Controlled Release, 1987. p. 85-97.
5. El Maghraby GM, Barry BW, Williams AC. Liposomes and skin: From drug delivery to model membranes. European Journal of Pharmaceutical Sciences 2008;34(4-5):203-222.
6. Chein YW. Transdermal Controlled Systemic Medications. Marcel Dekker Inc, New York 1987;31(6-21):25-59,129-154.
7. Moser K, Kriwet K, Naik A, Kalia YN, Guy RH. Passive skin penetration enhancement and its quantification in vitro. European Journal of Pharmaceutics and Biopharmaceutics 2001;52(2):103-112.
8. Hadgraft J. Skin deep. European Journal of Pharmaceutics and Biopharmaceutics 2004;58(2):291-299.
9. Trommer H, Neubert RHH. Overcoming the stratum corneum: The modulation of skin penetration. A review. Skin Pharmacology and Physiology 2006;19(2):106-121.
10. Lippold BC. Biopharmazie. Eine Einführung zu den wichtigsten Arzneiformen 1984.
11. Kalbitz J, Neubert R, Wohlrab W. Modulation of skin drug penetration. Modulation der Wirkstoffpenetration in die Haut 1996;51(9):619-637.
12. Chien YW, Xu H, Chiang CC, Huang YC. Transdermal controlled administration of indomethacin. I. Enhancement of skin permeability. Pharmaceutical Research 1988;5(2):103-106.
13. Ongpipattanakul B, Burnette RR, Potts RO, Francoeur ML. Evidence that oleic acid exists in a separate phase within stratum corneum lipids. Pharmaceutical Research 1991;8(3):350-354.
14. Thong HY, Zhai H, Maibach HI. Percutaneous penetration enhancers: An overview. Skin Pharmacology and Physiology 2007;20(6):272-282.
15. Williams AC, Barry BW. Penetration enhancers. Advanced Drug Delivery Reviews 2004;56(5):603-618.
16. Tupker RA, Pinnagoda J, Nater JP. The transient and cumulative effect of sodium lauryl sulphate on the epidermal barrier assessed by transepidermal water loss: Inter-individual variation. Acta Dermato-Venereologica 1990;70(1):1-5.
17. Aqil M, Ahad A, Sultana Y, Ali A. Status of terpenes as skin penetration enhancers. Drug Discovery Today 2007;12(23-24):1061-1067.
18. Prausnitz MR, Mitragotri S, Langer R. Current status and future potential of transdermal drug delivery. Nature Reviews Drug Discovery 2004;3(2):115-124.
19. 張輔晏. 薑黃素經皮傳遞之微乳液系統. 長庚大學 碩士論文 2009:45p.
20. Ball AM, Smith KM. Optimizing transdermal drug therapy. American Journal of Health-System Pharmacy 2008;65(14):1337-1346.
21. Aggarwal BB, Sung B. Pharmacological basis for the role of curcumin in chronic diseases: an age-old spice with modern targets. Trends in Pharmacological Sciences 2009;30(2):85-94.
22. Goel A, Kunnumakkara AB, Aggarwal BB. Curcumin as "Curecumin": From kitchen to clinic. Biochemical Pharmacology 2008;75(4):787-809.
23. Bengmark S, Mesa MD, Gil Hernández A. Plant-derived health - The effects of turmeric and curcuminoids. Nutricion Hospitalaria 2009;24(3):273-281.
24. Anand P, Kunnumakkara AB, Newman RA, Aggarwal BB. Bioavailability of curcumin: Problems and promises. Molecular Pharmaceutics 2007;4(6):807-818.
25. Aggarwal BB, Harikumar KB. Potential therapeutic effects of curcumin, the anti-inflammatory agent, against neurodegenerative, cardiovascular, pulmonary, metabolic, autoimmune and neoplastic diseases. International Journal of Biochemistry and Cell Biology 2009;41(1):40-59.
26. Chen AL, Hsu CH, Lin JK, Hsu MM, Ho YF, She TS, et al. Phase I clinical trial of curcumin, a chemopreventive agent, in patients with high-risk or pre-malignant lesions. Anticancer Research 2001;21(4 B):2895-2900.
27. Pari L, Murugan P. Effect of tetrahydrocurcumin on blood glucose, plasma insulin and hepatic key enzymes in streptozotocin induced diabetic rats. Journal of Basic and Clinical Physiology and Pharmacology 2005;16(4):257-274.
28. Satoskar RR, Shah SJ, Shenoy SG. Evaluation of anti-inflammatory property of curcumin (diferuloyl methane) in patients with postoperative inflammation. International Journal of Clinical Pharmacology Therapy and Toxicology 1986;24(12):651-654.
29. Deodhar SD, Sethi R, Srimal RC. Preliminary study on antirheumatic activity of curcumin (diferuloyl methane). Indian Journal of Medical Research 1980;71(4):632-634.
30. Sandur SK, Pandey MK, Sung B, Ahn KS, Murakami A, Sethi G, et al. Curcumin, demethoxycurcumin, bisdemethoxycurcumin, tetrahydrocurcumin and turmerones differentially regulate anti-inflammatory and anti-proliferative responses through a ROS-independent mechanism. Carcinogenesis 2007;28(8):1765-1773.
31. Wahlstrom B, Blennow G. A study on the fate of curcumin in the rat. Acta Pharmacologica et Toxicologica 1978;43(2):86-92.
32. Boriwanwattanarak P, Ingkaninan K, Khorana N, Viyoch J. Development of curcuminoids hydrogel patch using chitosan from various sources as controlled-release matrix. International Journal of Cosmetic Science 2008;30(3):205-218.
33. Patel R, Singh SK, Singh S, Sheth NR, Gendle R. Development and characterization of curcumin loaded transfersome for transdermal delivery. Journal of Pharmaceutical Sciences and Research 2009;1(4):71-80.
34. Danielsson I, Lindman B. The definition of microemulsion. Colloids and Surfaces 1981;3(4):391-392.
35. Santos P, Watkinson AC, Hadgraft J, Lane ME. Application of microemulsions in dermal and transdermal drug delivery. Skin Pharmacology and Physiology 2008;21(5):246-259.
36. Kogan A, Garti N. Microemulsions as transdermal drug delivery vehicles. Advances in Colloid and Interface Science 2006;123-126(SPEC. ISS.):369-385.
37. Heuschkel S, Goebel A, Neubert RHH. Microemulsions - Modern colloidal carrier for dermal and transdermal drug delivery. Journal of Pharmaceutical Sciences 2008;97(2):603-631.
38. Lawrence MJ, Rees GD. Microemulsion-based media as novel drug delivery systems. Advanced Drug Delivery Reviews 2000;45(1):89-121.
39. Pileni MP. Reverse micelles as microreactors. Journal of Physical Chemistry 1993;97(27):6961-6973.
40. Gloor M, Haus G, Keipert S. Keratolytic activity of microemulsions. Skin Pharmacology and Applied Skin Physiology 2003;16(3):151-155.
41. Changez M, Varshney M, Chander J, Dinda AK. Effect of the composition of lecithin/n-propanol/isopropyl myristate/water microemulsions on barrier properties of mice skin for transdermal permeation of tetracaine hydrochloride: In vitro. Colloids and Surfaces B: Biointerfaces 2006;50(1):18-25.
42. Kemken J, Ziegler A, Muller BW. Influence of supersaturation on the pharmacodynamic effect of bupranolol after dermal administration using microemulsions as vehicle. Pharmaceutical Research 1992;9(4):554-558.
43. Peltola S, Saarinen-Savolainen P, Kiesvaara J, Suhonen TM, Urtti A. Microemulsions for topical delivery of estradiol. International Journal of Pharmaceutics 2003;254(2):99-107.
44. 陳嘉媚. 維他命K1與薑黃素傳遞之奈米乳液. 長庚大學 碩士論文 2008:55p.
45. Cui J, Yu B, Zhao Y, Zhu W, Li H, Lou H, et al. Enhancement of oral absorption of curcumin by self-microemulsifying drug delivery systems. International Journal of Pharmaceutics 2009;371(1-2):148-155.
46. Williams AC, Barry BW. Terpenes and the lipid-protein-partitioning theory of skin penetration enhancement. Pharmaceutical Research 1991;8(1):17-24.
47. Costa P, Sousa Lobo JM. Evaluation of mathematical models describing drug release from estradiol transdermal systems. Drug Development and Industrial Pharmacy 2003;29(1):89-97.
48. Al-Saidan SM. Transdermal self-permeation enhancement of ibuprofen. Journal of Controlled Release 2004;100(2):199-209.
49. Shakeel F, Baboota S, Ahuja A, Ali J, Shafiq S. Skin permeation mechanism and bioavailability enhancement of celecoxib from transdermally applied nanoemulsion. Journal of Nanobiotechnology 2008;6.



連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top