跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.81) 您好!臺灣時間:2025/10/04 04:59
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:邱正育
研究生(外文):Cheng-Yu Chiu
論文名稱:發展基於虛擬列印系統與其漢默斯坦模式之半色調演算法並使用一類單色雷射印表機進行驗證
論文名稱(外文):Halftone Algorithm Development Based on a Virtual Printing System and its Hammerstein Model with Application to a Class of Monochrome Laser Printers
指導教授:陳正倫陳正倫引用關係
學位類別:碩士
校院名稱:國立中興大學
系所名稱:電機工程學系所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:英文
論文頁數:148
中文關鍵詞:半色調印表機
外文關鍵詞:halftoneprinter
相關次數:
  • 被引用被引用:0
  • 點閱點閱:334
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在本篇論文中,我們提出二類型虛擬印表機的模型去實現實際印表機的品質。第一類型是利用光電成像的技術且利用實際印表機的參數建構而成,但是此類型的虛擬印表機印列影像時會耗費許多的時間。因為耗費時間的因素,讓我們想要改進虛擬印表機使得速度更快。根據漢默斯坦(Hammerstein/Wiener)的技術可以同時掌控虛擬印表機的線性區塊與非線性區塊,再配合上模糊類神經網路(Fuzzy Neural Network)可以讓虛擬印表機印列功能更佳的完善。因此我們第二類型的虛擬印表機即是用Hammerstein/Wiener 概念結合Fuzzy Neural Network技術而成。
我們知道實際印表機在印列影像前都必須將灰階或是彩色的影像先轉換成二元的影像才能夠進行列印。然而把灰階影像轉換成二元影像的技術稱為半色調技術,在本篇論文中會簡單的介紹現今流行的半色調技術並提出新的結構。此新結構能夠含蓋現今流行的半色調技術與Model-Based技術結合,利用此模型經印表機列印出來的品質會比傳統半色調經印表機列印出來的品質更佳。
In this thesis, we propose two kinds of virtual printer models to achieve real printers’ quality. First kind uses eletrophotography technology and applies real popular printers’ parameters to achieve, but these kinds of virtual printers printed images always cost much time. Because this reason, let we want to improve these kinds of printers to print faster. According to technology of Hammerstein/Wiener, we could control not only linear block but also nonlinear block on virtual printers and then associate with fuzzy neural network. Thus the virtual printers printed performance better than before. Therefore our second kind of virtual printer is applied technology of Hammerstein/Wiener concept associate with fuzzy neural network.
As we know, real printers printed before must to be converting gray scale images or color images into the binary images, and the binary images are able to print. However the method of convert gray scale images into binary images is called halftone algorithm. In this thesis, we can simple introduce recent popular halftone algorithms, and propose new structure, the structure could include all of recent popular halftone algorithms and associate with Model-Based method. Using this model passed a printer printed quality better than traditionally halftone went through a printer.
Acknowledgement i
Chinese Abstract ii
English Abstract iii
Contents iv
List of Tables vi
List of Figures vii

Chapter 1 Introduction 1
1.1 Motivation 4
1.2 Literature Review 8
1.2.1 Human Visual System 11
1.2.2 Existing Halftoning Algorithms 14
1.2.2.1 Bayer Dither Method 15
1.2.2.2 Error Diffusion 17
1.2.2.3 Dot Diffusion 19
1.2.2.4 Direct Binary Search 21
1.2.2.5 Model-Based Methods 22
1.2.3 Linear Filtering in Spatial Domain 23
1.2.4 Fuzzy Neural Networks 26
1.2.5 Hammerstein/Wiener Models for Nonlinear System 29
1.3 Organization and Contribution 30
Chapter 2 System Description 32
2.1 Electrophotographic Process 33
2.2 Modulation Transfer Function of a Printing System 38
2.3 Design Framework of Model-based Halftoning Algorithms 45
Chapter 3 Incorporating a Virtual Printer into Digital Halftoning 48
3.1 Model-Based Halftoning with a Virtual Printer 48
3.2 Mathematical Model of a Virtual Printer 51
3.3 Experimental Results 53
3.4 Conclusions 60
Chapter 4 Incorporating the Hammerstein Model of a Laser Printer into Digital Halftoning 62
4.1 Configuration of the Hammerstein Model with Fuzzy Neural Network 62
4.2 Parametric Training of the Hammerstein Model 84
4.3 Evaluation the Hammerstein Printer Model 93
4.4 Experimental Results 98
4.5 Conclusions 113
Chapter 5 Conclusions and Future Work 115
5.1 Conclusions 115
5.2 Future Work 116
References 117
Appendix A Parameters for the Virtual Printer 130
Appendix B Numerical Approximation of Partial Differential Equations 135
Appendix C Training Samples for the Fuzzy Neural Network 140
[1]R. Loce and W. Lama, “Halftone banding due to vibrations in a xerographic image bar printer,” Journal of Imaging Technology, vol. 16, no. 1, pp. 6-11, 1990.
[2]C.-L. Chen and G. T.-C. Chiu, “Halftone banding reduction for a class of electrophotographic systems – Part II: closed-loop control,” submitted to Journal of Mechatronics. (NSC94-2218-E-005-017)
[3]C.-L. Chen and G. T.-C. Chiu, “Halftone banding reduction for a class of electrophotographic systems – Part I: characterization and modeling,” submitted to Journal of Mechatronics. (NSC94-2218-E-005-017)
[4]C.-L. Chen and G. T.-C. Chiu, “Spatially periodic disturbance rejection with spatially sampled robust repetitive control,” submitted to ASME Journal of Dynamic Systems, Measurement and Control (revision submitted; NSC94-2218-E-005-017).
[5]C.-L. Chen and Y.-S. Yang, “Adaptive repetitive control for uncertain variable-speed rotational motion systems subject to spatially periodic disturbances,” submitted to 2006 American Control Conference. (NSC94-2218-E-005-017)
[6]C.-L. Chen and Y.-S. Yang, “Adaptive repetitive control in spatial domain with application to variable-speed rotational motion systems,” submitted to 2007 IEEE Conference on Control Application. (NSC94-2218-E-005-017)
[7]C.-L. Chen and G. T.-C. Chiu, “Controller design for a class of color electrophotographic systems with under-actuated motor/gear configuration,” The 6th Asian Control Conference (ASCC), pp. 147-154, 2006. (EI)
[8]C.-L. Chen and G. T.-C. Chiu, “Closed loop banding artifact reduction for a class of color electrophotographic printers with under-actuated motor/gear configuration,” submitted to IEEE Trans. Control Systems Technology. (under revision; NSC95-2221-E-005-041)
[9]B. A. Smith and A. P. Alegria, Image forming system and method and photoconductor having wear indicator, US Patent 6,904,243 (2005).
[10]J. S. Facci and R. L. McGrath, Method for charging a photoreceptor to extend the life of a charge receptor in a xerographic printer, US Patent 7,054,574 (2006).
[11]J. E. Camp et al., Method of driving a fuser roll in an electrophotographic printer, US Patent 7,054,571 (2006).
[12]Y. Hotta, M. Goto, and T. Miyamoto, Image forming apparatus having relationship between driving gear pitch and scanning line pitch, U.S. Patent 5,917,529 (1999).
[13]H. Hasei et al., Micro lens and fabrication method of micro lens, optical device, optical transmitter, laser printer head, and laser printer, US Patent 7,145,725 (2006).
[14]G.-Y. Park et al., Apparatus for preventing developer wraparound in wet electrophotographic printer, US Patent 7,113,730 (2006).
[15]P.D. Burns, M. Rabbani and L.A. Ray, “Analysis of image noise due to position errors in laser writers,” Applied Optics, vol. 25, no. 13, pp. 2158-2168, July 1986.
[16]A. Silverstein and B. Chu, “Does Error-diffusion halftone texture mask banding,” in NIP14: 2000 International Conference on Digital Printing Technologies, Toronto, Canada, pp. 560-563, Oct. 1998.
[17]P. J. Kane, T. F. Bouk, P. D. Burns, and A. D. Thompson, “Quantification of banding, streaking and grain in flat field images,” in PICS 2000: Image Processing, Image Quality, Image Capture, Systems Conference, Portland, OR, pp. 79-83, March 2000.
[18]B. Mishra and D. R. Rasmussen, “Micro-uniformity: An Image Quality Metric For Measuring Noise,” in PICS 2000: Image Processing, Image Quality, Image Capture, Systems Conference, Portland, OR, pp. 75-78, March 2000.
[19]Z. He and C. A. Bouman, “Clustered AM/FM Halftoning Algorithm,” in NIP20: International Conference on Digital Printing Technologies, Salt Lake City, UT, pp. 627-631, October 31, 2004.
[20]Y. Bang, “Perception Based Hardcopy Banding Metric,” in NIP21: International Conference on Digital Printing Technologies, Baltimore, MD, pp. 78-83, September 18, 2005.
[21]C.-W. Wu et al., “Fast Error Diffusion and Digital Halftoning Algorithms Using Look-up Tables,” in NIP22: International Conference on Digital Printing Technologies, Denver, CO, pp. 240-243, September 17, 2006.
[22]B. E. Rogowitz, T. N. Pappas, and J. P. Allebach, “Human vision and electronic imaging,” Journal of Electronic Imaging, vol. 10, no. 1, pp. 10-19, 2001.
[23]F. A. Baqai and J. P. Allebach, “Computer-aided design of clustered-dot color screens based on a human visual system model,” Proceeding of the IEEE, vol. 90, no. 1, pp. 104-122, 2002.
[24]S. H. Kim and J. P. Allebach, “Impact of HVS models on model-based halftoning,” IEEE Trans. Image Processing, vol. 11, no. 3, pp. 258-269, 2002.
[25]H. Kawamoto, “Rotor dynamics of polygonal mirror scanner motor supported by air bearings in digital electrophotography,” Journal of Image Science and Technology, vol. 41, no. 6, pp. 565-569, 1997.
[26]H. Kawamoto, K. Udagawa and M. Mori, “Vibration and noise induced by electrostatic force on a contact charger roller of electrophotography,” Journal of Image Science and Technology, vol. 39, no. 6, pp. 477-480, December 1995.
[27]T. Iwamatsu and H. Hirakawa, “Banding Mechanism Caused by Self-Excited Vibration in a Contact Development System,” Journal of Imaging Science and Technology, vol. 50, no. 3, pp. 276-281, 2006.
[28]吳誌慶,1998,雷射印表機之除臭過濾裝置,中華民國發明專利第00325911號。
[29]王瑞麒等人,2004,具有可置換碳粉匣之雷射印表機影像形成機構,中華民國發明專利第00581269號。
[30]楊光初與林獻章,2005,雷射印表機機構之改良,中華民國發明專利第200500211號。
[31]楊光初,2006,可調變列印速度之連續式雷射印表機,中華民國發明專利第200612324號。
[32]李尚懿,使用整半週控制加熱器之雷射印表機運轉造成電壓閃爍之探討,國科會計畫 (89年度)。
[33]陳耀銘,雷射印表機碳粉匣滾輪測試平台之電源轉換器研製,國科會計畫 (92年度)。
[34]鄭芳炫,以非分離式彩色半色調模型為基礎的色彩重現系統之開發,國科會計畫 (87-89年度)。
[35]徐弘洋,利用分類向量量化及殘向資訊解決反半色調問題,國科會計畫 (87年度)。
[36]曾定章,彩色無偏差半色調列印技術研究,國科會計畫 (87-88年度)。
[37]賴榮滄,包含印表機模型及邊線加強之彩色影像半色調技術研究,國科會計畫 (89年度)。
[38]徐道義,資訊隱藏技術在半色調印刷輸出品的分析及開發,國科會計畫 (90年度)。
[39]蔡垂雄,強韌性半色調二元影像隱藏方法,國科會計畫 (91年度)。
[40]韓維愈,誤差擴散式半色調影像之數位浮水印研究,國科會計畫 (94年度)。
[41]郭景明,調適性雜訊平衡式錯誤擴散法於半色調影像之資料隱藏應用,國科會計畫 (94年度)。
[42]張隆紋,利用修改過的空間填充曲線半色調法的加強灰階視覺密碼方法,國科會計畫 (93年度)。
[43]韓維愈,誤差擴散式半色調方法運用於高容量圖像隱藏之研究,國科會計畫 (95年度)。
[44]林詠章,應用類神經網路於半色調及反半色調影像技術之研究,國科會計畫 (95年度)。
[45]E. S. Hamby and E. M. Gross, “A control-oriented survey of xerographic systems: basic concepts to new frontiers,” in American Control Conference, Boston, Massachusetts, pp. 2615-2629, 2004.
[46]P.-Y. Li et al., “Time sequential sampling and reconstruction of reproduction functions for xerographic printing,” in American Control Conference, Boston, Massachusetts, pp. 2630-2635, 2004.
[47]C.-L. Chen and George T.-C. Chiu, “Incorporating human visual model and spatial sampling in banding artifact reduction,” in American Control Conference, Boston, Massachusetts, pp. 2642-2647, 2004.
[48]V. Monga, N. Damera-Venkata, and B. L. Evans, “Design of tone-dependent color-error diffusion halftoning systems,” IEEE Transactions on Image Processing, vol. 16, pp. 198-211, 2007.
[49]T. N. Pappas and D. L. Neuhoff, “Least-squares model-based halftoning,” IEEE Transactions on Image Processing, vol. 8, pp. 1102-1116, 1999.
[50]R. Ulichney, “Review of halftoning techniques,” Proceedings of SPIE - The International Society for Optical Engineering, vol. 3963, pp. 378-391, 2000.
[51]J.-M. Guo, S.-C. Pei, and H. Lee, “A new progressive coding scheme for halftone dithered images using bit-interleaving,” International Journal of Imaging Systems and Technology, vol. 16, pp. 121-127, 2006.
[52]D. L. Lau, R. Ulichney, and G. R. Arce, “Blue- and green-noise halftoning models,” IEEE Signal Processing Magazine, vol. 20, pp. 28-38, 2003.
[53]G.-Y. Lin and J. P. Allebach, “Multilevel screen design using direct binary search,” San Jose, CA, United States, 2002, pp. 264-277.
[54]V. Monga, N. Damera-Venkata, and B. L. Evans, “Design of tone-dependent color-error diffusion halftoning systems,” IEEE Transactions on Image Processing, vol. 16, pp. 198-211, 2007.
[55]M. Mese and P. P. Vaidyanathan, “Recent advances in digital halftoning and inverse halftoning methods,” IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, vol. 49, pp. 790-805, 2002.
[56]F. A. Baqai and J. P. Allebach, “Halftoning via direct binary search using analytical and stochastic printer models,” IEEE Transactions on Image Processing, vol. 12, pp. 1-15, 2003.
[57]H. Nishida, “Model-based digital halftoning with adaptive eye filters,” Thessaloniki, 2001, pp. 1069-1072.
[58]T. N. Pappas, “Model-based halftoning of color images,” IEEE Transactions on Image Processing, vol. 6, pp. 1014-1024, 1997.
[59]R. Ulichney, “Review of halftoning techniques,” Proceedings of SPIE - The International Society for Optical Engineering, vol. 3963, pp. 378-391, 2000.
[60]J.-M. Guo, S.-C. Pei, and H. Lee, “A new progressive coding scheme for halftone dithered images using bit-interleaving,” International Journal of Imaging Systems and Technology, vol. 16, pp. 121-127, 2006.
[61]D. L. Lau, R. Ulichney, and G. R. Arce, “Blue- and green-noise halftoning models,” IEEE Signal Processing Magazine, vol. 20, pp. 28-38, 2003.
[62]G.-Y. Lin and J. P. Allebach, “Multilevel screen design using direct binary search,” San Jose, CA, United States, 2002, pp. 264-277.
[63]H. Nishida, “Adaptive model-based digital halftoning incorporating image enhancement,” Pattern Recognition, vol. 34, pp. 1799-1811, 2001.
[64]T. N. Pappas, “Model-based techniques for digital halftoning,” Austin, TX, USA, 1994, pp. 26-30.
[65]J. L. Mannos and D. J. Sakrison, “The effects of a visual fidelity criterion on the encoding of images”, IEEE Transactions on Information Theory, vol. IT-20, no. 4, pp. 525-536, 1974.
[66]V. Virsu, P. Lehtio, and J. Rovamo, “Contrast sensitivity in normal and pathological vision,” Documenta Ophthalmologica Proceeding Series, vol. 30, The Netherlands: Dr. W. Junk Publisher, 1981.
[67]P. Barten, “Evaluation of subjective image quality with the square-root integral method”, Journal of the Optical Society of America, vol. 7, no. 10, pp. 2024-20331, 1990.
[68]P. G. Engeldrum, “A framework for image quality models,” Journal of Imaging Science and Technology, vol. 39, no. 4, pp. 312-318, 1995.
[69]L. K. Mestha et al., “Toward a control oriented model of xerographic marking engines,” Proc. IEEE 35th Conf. Decision and Control, pp. 4837-4843, 1996.
[70]R. Groff et al., “Modeling and control of color xerographic processes,” Proc. IEEE 38th Conf. Decision and Control, pp. 1697-1702, 1999.
[71]R. E. Groff et al., “Representation of color space transformation for effective calibration and control,” IS&T Intl. Conf. Digital Printing Technology, pp. 255-260, 2000.
[72]C. Lana, M. Rotea, and D. Viassolo, “Characterization of color printers using robust parameter estimation,” IS&T/SID 11th Color Imaging Conference, pp. 224-231, 2003.
[73]E.-W. Bai, “An optimal two-stage identification algorithm for hammerstein-wiener nonlinear systems,” Automatica, vol. 34, no. 3, pp. 333-338, 1998.
[74]S. H. Ong and P. M. Nickolls, “Analysis of MTF degradation in the imaging of cells in a flow System,” International Journal of Imaging Science and Technology, vol. 5, pp. 243-250, 1994.
[75]S. Inoue et al., “An evaluation of image quality for hardcopy based on the MTF of paper,” Journal of Imaging Science and Technology, vol. 44, no. 3, pp. 188-195, 2000.
[76]C. Koopipat et al., “Image evaluation and analysis of ink jet printing system (I): MTF measurement and analysis of ink jet images,” Journal of Imaging Science and Technology, vol. 45, no. 6, pp. 591-597, 2001.
[77]R. Jenkin et al., “Analytical MTF bounds and estimate for SFR in discrete imaging arrays due to non-stationary effects,” Journal of Imaging Science and Technology, vol. 47, no. 3, pp. 200-208, 2003.
[78]J. Nakamoto et al., “Quantitative evaluation of print density uniformity using MTF fractal dimension,” Systems and Computers in Japan, vol. 34, no. 2, pp. 92-99, 2003.
[79]A. S. Chawla et al., “Determining the MTF of medical imaging displays using edge techniques,” Journal of Digital Imaging, vol. 18, no. 4, pp. 296-310, 2005.
[80]W. Jang and J. P. Allebach, “Characterization of printer MTF,” Journal of Imaging Science and Technology, vol. 50, no. 3, pp. 264-175, 2006.
[81]C.-L. Chen, G. T.-C. Chiu and Jan P. Allebach, “Banding reduction in EP processes using human contrast sensitivity function shaped photoconductor velocity control,” J. Imaging Science and Technology, vol. 47, no. 3, pp. 209-223, May/June 2003.
[82]T. N. Pappas, “Digital halftoning: a model-based perspective,” International Journal of Imaging Systems and Technology, vol. 7, pp. 110-120, 1996.
[83]J.-M. Guo, “A new model-based digital halftoning and data hiding designed with LMS optimization,” IEEE Transactions on Multimedia, vol. 9, pp. 687-699, 2007.
[84]Rafael C. Gonzalez, Richard E. Woods, Steven L. Eddins, “Digital Image Processing Using MATLAB”
[85]Edwin K. P. Chong, Stanislaw H. Zak, “An Introduction to Optimization” 2001, John Wiley & Sons.
[86]W. Jiekang, L. Ying, and C. Guotong, "Neuro-fuzzy and digital FIR filter approach for power system measurement denoising," Beijing, United states, 2006, pp. 607-610.
[87]C.-H. Lee and C.-J. Yu, "Fuzzy Fourier system for function mapping," Beijing, China, 2002, pp. 1530-1533.
[88]N. Suetake and T. Yamakawa, "Neo fuzzy neuron filter aiming at reduction of a Gaussian-impulsive noise," Proceedings of the International Joint Conference on Neural Networks, vol. 6, pp. 4324-4328, 1999.
[89]O. Mendoza, P. Melin, and G. Licea, "A hybrid approach for image recognition combining type-2 fuzzy logic, modular neural networks and the Sugeno integral," Information Sciences, vol. 179, pp. 2078-2101, 2009.
[90]Y.-P. Wang, J.-W. Dang, Q. Li, and S. Li, "Multimodal medical image fusion using fuzzy radial basis function neural networks," Beijing, China, 2008, pp. 778-782.
[91]W. Gong and N. Qi, "Direct reckoning reverberation time from the scene images based on rough fuzzy neural network," Sanya, Hainan, China, 2008, pp. 398-402.
[92]L. S. Xu, M. Q. H. Meng, and K. Q. Wang, "Pulse image recognition using fuzzy neural network," Lyon, France, 2007, pp. 3148-3151.
[93]D. H. Rao and P. P. Panduranga, "A survey on image enhancement techniques: Classical spatial filter, neural network, cellular neural network and fuzzy filter," Mumbai, India, 2006, pp. 2821-2826.
[94]P. Liu, "Representation of digital image by fuzzy neural network," Fuzzy Sets and Systems, vol. 130, pp. 109-123, 2002.
[95]J. Li, N. Barrett, Y.-Q. Zhang, and D. A. Washburn, "Genetic granular cognitive fuzzy neural networks and human brains for pattern recognition," Beijing, China, 2005, pp. 172-175.
[96]H.-P. Chiu and D.-C. Tseng, "Invariant handwritten Chinese character recognition using fuzzy min-max neural networks," Pattern Recognition Letters, vol. 18, pp. 481-491, 1997.
[97]H. K. Kwan and Y. Cai, "Fuzzy neural network and its application to pattern recognition," IEEE Transactions on Fuzzy Systems, vol. 2, pp. 185-193, 1994.
[98]B. Hussain and M. R. Kabuka, "Novel feature recognition neural network and its application to character recognition," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 16, pp. 98-106, 1994.
[99]A. Khotanzad and J.-H. Lu, "Classification of invariant image representations using a neural network," IEEE Transactions on Acoustics, Speech, and Signal Processing, vol. 38, pp. 1028-1038, 1990.
[100]A. Khotanzad and Y. H. Hong, "Invariant image recognition by Zernike moments," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 12, pp. 489-497, 1990.
[101]X.-W. Zhang, Y.-Y. Lv, Y.-Q. Ding, and Z.-T. Zhou, "Research on the recognition of surface defects in copper strip based on fuzzy neural network," Chengdu, China, 2008.
[102]W. Pedrycz, A. Amato, V. Di Lecce, and V. Piuri, "Fuzzy clustering with partial supervision in organization and classification of digital images," IEEE Transactions on Fuzzy Systems, vol. 16, pp. 1008-1026, 2008.
[103]C.-F. Juang and L.-T. Chen, "Moving object recognition by a shape-based neural fuzzy network," Neurocomputing, vol. 71, pp. 2937-2949, 2008.
[104]B. Wang, X. Zhang, and N. Li, "Relevance feedback technique for content-based image retrieval using neural network learning," Dalian, China, 2006, pp. 3692-3696.
[105]A. Mumtaz, S. A. M. Gilani, and T. Jameel, "A novel texture image retrieval system based on dual tree complex wavelet transform and support vector machines," Peshawar, Pakistan, 2006, pp. 108-114.
[106]E. C. C. Tsang, D. S. Yeung, J. W. T. Lee, D. M. Huang, and X. Z. Wang, "Refinement of Generated Fuzzy Production Rules by Using a Fuzzy Neural Network," IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, vol. 34, pp. 409-418, 2004.
[107]L. Zhang, F. Lin, and B. Zhang, "Support vector machine learning for image retrieval," Thessaloniki, Greece, 2001, pp. 721-724.
[108]R. J. Kuo, S. C. Chi, and P. W. Teng, "Generalized part family formation through fuzzy self-organizing feature map neural network," Computers and Industrial Engineering, vol. 40, pp. 79-100, 2001.
[109]R. Haber and H. Unbehauen, "Structure identification of nonlinear dynamic systems. A survey on input/output approaches," Automatica, vol. 26, pp. 651-677, 1990.
[110]M. Kozek and N. Jovanovic, "Identification of Hammerstein/Wiener nonlinear systems with extended Kalman filters," Anchorage, AK, United States, 2002, pp. 969-974.
[111]E.-W. Bai, "A blind approach to the Hammerstein-Wiener model identification," Automatica, vol. 38, pp. 967-979, 2002.
[112]P. Crama and J. Schoukens, "Hammerstein-Wiener system estimator initialization," Automatica, vol. 40, pp. 1543-1550, 2004.
[113]E.-W. Bai, "Optimal two-stage identification algorithm for Hammerstein-Wiener nonlinear systems," Automatica, vol. 34, pp. 333-338, 1998.
[114]J. L. Yong, W. S. Su, S. Park, and S. Park, "Input test signal design and parameter estimation method for the Hammerstein-Wiener processes," Industrial and Engineering Chemistry Research, vol. 43, pp. 7521-7530, 2004.
[115]H. C. Park, S. W. Sung, and J. Lee, "Modeling of Hammerstein - Wiener processes with special input test signals," Industrial and Engineering Chemistry Research, vol. 45, pp. 1029-1038, 2006.
[116]D. Zhai, D. K. Rollins Sr, N. Bhandari, and H. Wu, "Continuous-time Hammerstein and Wiener modeling under second-order static nonlinearity for periodic process signals," Computers and Chemical Engineering, vol. 31, pp. 1-12, 2006.
[117]A. Janczak, "Neural network approach for identification of Hammerstein systems," International Journal of Control, vol. 76, pp. 1749-1766, 2003.
[118]J.-S. Wang and Y.-P. Chen, "A hammerstein neuro-fuzzy network with an online hybrid construction algorithm for dynamic applications," Vancouver, BC, Canada, 2006, pp. 2104-2111.
[119]L. Jia, M.-S. Chiu, and S. S. Ge, "A noniterative neuro-fuzzy based identification method for Hammerstein processes," Journal of Process Control, vol. 15, pp. 749-761, 2005.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top