1.王盼(2014)。基於隨機森林模型的需水預測模型及其應用。水資源保護,第30卷,第1期,第34-37頁。
2.王潔如、黃麗蓉、蕭玲鳳、李清勝(2014)。2014年定量降雨系集預報實驗(TAPEX)結果分析與討論。台灣颱風洪水研究中心,21pp。
3.林士浩(2011)。六小時雨量預報資訊之即時校正與分析。國立臺北科技大學土木與防災研究所碩士論文。4.丘台光、陳家榮、張保亮、林品芳 (2007)。劇烈天氣監測系統QPESUMS之服務與應用。國土資訊系統通訊,61,第15-26頁。
5.唐玉霜、張保亮 (2015)。劇烈天氣系統(QPESUMS)發展與客製化服務。104年天氣分析與預報研討會,台北。
6.陳忠煒(2014)。應用遙測及地面雨量資訊於WRF颱風時雨量預報。國立成功大學水利及海洋工程研究所碩士論文。7.陳憲宗(2006)。Real-time Probabilistic Flood Stage Forecasting Using Support Vector Machines and Fuzzy Inference Model。國立成功大學水利及海洋工程研究所博士論文。
8.郭家妏(2014)。隨機森林在河川水位即時預報之應用。國立成功大學水利及海洋工程研究所碩士論文。9.張逸凡(2005)。支撐向量機在即時河川水位預報之應用。國立成功大學水利及海洋工程研究所碩士論文.10.葉天降、馮欽賜、柳再明、陳得松、黃康寧、陳雯美、汪鳳如、洪景山 (2012)。中央氣象局數值天氣預報作業系統(二)預報模式概況。氣象學報,第48卷,第4期,第69-95頁。
11.經濟部水利署(2011)。機率式洪水預報系統之研發(2/2)。
12.鳳雷、陳嬿竹(2012)。定量降雨整合預報技術之研發-2011年颱風定量降雨數值模式系集預報實驗。台灣颱風洪水研究中心技術報告。
13.劉鑌鋈(2009)。利用機器學習修正QPESUMS雷達估計降雨。國立成功大學水利及海洋工程研究所碩士論文。14.Breiman, L., & Cutler, A. (2001). Random Forests. Machine Learning, 45(1), 5-32.
15.Chang, P. L., Lin, P. F., Jou, B. J. D., & Zhang, J. (2009). An Application of Reflectivity Climatology in Constructing Radar Hybrid Scans over Complex Terrain. J. Atmos. Oceanic Technol., 26, 1315-1327.
16.Chen, J., Uyeda, H., Lee, D. I., & Kinosita, T. (2005). Establishment of Z-R Relationships for the Baiu Precipitation Using the Window Probability Matching Method. Meteorological Applications, 12, 207-215.
17.Chen, J., Li, M., & Wang, W. (2012). Statistical Uncertainty Estimation Using Random Forests and Its Application to Drought Forecast. Mathematical Problems in Engineering, 1-12.
18.Fang, X., Kuo, Y.-H., & Wang A. (2011). The Impacts of Taiwan topography on the predictability of Typhoon Morakot’s record-breaking rainfall: A high-resolution ensemble simulation. Wea. Forecasting, 26, 613–633.
19.Fang, X., & Kuo, Y.-H. (2013). Improving Ensemble-Based Quantitative Precipitation Forecasts for Topography-Enhanced Typhoon Heavy Rainfall over Taiwan with a Modified Probability-Matching Technique. Monthly Weather Review, 26, 3908–3932.
20.Gagne II, D. J., McGovern, A., & Xue, M. (2011). Machine Learning Enhancement of Storm Scale Ensemble Precipitation Forecasts. Workshop on Knowledge discovery, modeling, and simulation, San Diego, CA, U.S.
21.Genuer, R., Poggi, J. M., & Tuleau-Malot, C. (2010). Variable Selection Using Random Forests. Pattern Recognition Letters, 31(14), 2225-2236.
22.Herrera, M., Torgo, L., Izquierdo, J., & Pérez-García, R. (2010). Predictive Models for Forecasting Hourly Urban Water Demand. Journal of Hydrology, 387, 141-150.
23.Hsiao, L. F., Yang, M. J., Lee, C. S., Kuo, H. C., Shih, D. S., Tsai, C. C., Wang, C. J., Chang, L.Y., Chen, Y. C., Feng, L., Hong, J. S., Fong, C. T., Chen, D. S., Yeh, T. C., Huang, C. Y., Guo, W. D., & Lin, G. F. (2013). Ensemble Forecasting of Typhoon Rainfall and Floods over a Mountainous Watershed in Taiwan. Journal of Hydrology, 506, 55-68.
24.Hsu, C. W., Chang, C. C. & Lin, C. J. (2003). A Practical Guide to Support Vector Classification. Techincal report, Department of Computer Science and Information Engineering, National Taiwan University.
25.Hong, W. C. (2008). Rainfall forecasting by technological machine learning models. Applied Mathematics and Computation, vol. 200, iss. 1, 41-57.
26.Lin, G. F., Chen, G. R., Wu, M. C., & Chou, Y. C. (2009). Effective Forecasting of Hourly Typhoon Rainfall Using Support Vector Machines. Water Resources Research, 45.
27.Lin, G. F., Jhong, B. C., & Chang, C. C. (2013). Development of an Effective Data-Driven Model for Hourly Typhoon Rainfall Forecasting. Journal of Hydrology, 495, 52-63.
28.Lin, G. F., Wang, T. C., & Chen, L. H. (2016). A Forecasting Approach Combining Self-Organizing Map with Support Vector Regression for Reservoir Inflow during Typhoon Periods. Advances in Meteorology, 12.
29.Liong, S. Y., & Sivapragasam, C. (2002). Flood Stage Forecasting with Support Vector Machines. American Water Resources Association, vol. 38, iss. 1, 173-186.
30.Murphy, J. M. (1990). Assessment of the practical utility of extended range ensemble forecasts. Quarterly Journal of the Royal Meteorological Society, 116, 89-125.
31.Prasad, A.M., Iverson, L.R., & Liaw, A., (2006). Newer Classification and Regression Tree Techniques-Bagging and Random Forests for Ecological Prediction. Ecosystems, 9(2), 181-199.
32.Rokach, L. (2010). Ensemble-Based Classifier. Artifical Intelligence Review, 33(1-2), 1-39.
33.Skamarock, W. C., Coauthors 2008: A description of the Advanced Research WRF version 3. NCAR Tech. 113pp.
34.Su, Y. F. (2015). Bias correction of dynamic downscaled typhoons rainfall data for hydrological applications. 20pp.
35.Teng, J., Potter, N. J., Chiew, F. H. S., Zhang, L., Wang, B., Vaze, J., & Evans, J. P. (2015). How does bias correction of regional climate model precipitation affect modelled runoff?. Hydrology and Earth System Sciences, 19, 711-728.
36.Tribbia, J. J., & Baumhefner, D. P. (1988). The reliability of improvements in deterministic short-range forecasts in the presence of initial state and modeling deficiencies. Monthly Weather Review, 116, 2276-2288.
37.Vapnik, V. N. (1995). The Nature of Statistical Learning Theory, Springer-Verlag New York.
38.Wang, Z., Lai, C., Chen, X., Yang, B., Zhao, S. W., & Bai, X. Y. (2015). Flood Hazard Risk Assessment Model Based on Random Forest. Journal of Hydrology, 527, 1130-1141.
39.Wu, S. J., Lien, H. C., & Chang, C. H. (2012). Real-time correction of water stage forecast during rainstorm events using combination of forecast errors. Stochastic Environmental Research and Risk Assessment, 4, 519-531.
40.Xin, L., Recuter G., & Larochelle B. (1997). Reflectivity-rain rate relationship for convective rainshowers in Edmonton. Atmosphere-Ocean, vol. 35, iss. 4, 513-521.
41.Yamaguchi, M., Sakai, R., Kyoda, M., Komori, T., & Kadowaki, T. (2009). Typhoon ensemble prediction system developed at the Japan Meteorological Agency. Monthly Weather Review. 137, 2592-2604.