跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.176) 您好!臺灣時間:2025/09/07 05:08
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黎子賓
研究生(外文):Tzu-Pin Li
論文名稱:開發並以自組裝型卵磷脂混合微胞藥物傳遞系統為黏膜傳遞劑型平台之應用
論文名稱(外文):Development and Application of Lecithin-based Self-Assembly Mixed Micellar Drug Delivery Systems As Transmucosal Delivery Dosage Type Platform
指導教授:許明照許明照引用關係
指導教授(外文):Ming-Thau Sheu
學位類別:博士
校院名稱:臺北醫學大學
系所名稱:藥學系(碩博士班)
學門:醫藥衛生學門
學類:藥學學類
論文種類:學術論文
論文出版年:2018
畢業學年度:106
語文別:中文
論文頁數:122
中文關鍵詞:自組裝卵磷脂微胞黏膜傳遞
外文關鍵詞:LecithinSelf-AssemblyMicelleTransmucosal Delivery
相關次數:
  • 被引用被引用:0
  • 點閱點閱:335
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
BCS class II、III、IV類的藥物各自因水溶解度及對細胞膜的滲透性的缺點而有其臨床應用的限制性,因此本研究欲開發一個以卵磷脂為基礎的自組裝型混合微胞藥物傳遞系統(saLMMs)作為載體平台,使其可以依活性成分的特性及適合其吸收之消化道黏膜部位,應用為不同的黏膜傳遞劑型,以改善既有應用方式之缺點。
在將微胞應用為口服液劑型以改善白藜蘆醇(t-Rev)(BCS class II)生體可用率的部分,優化後的微胞處方(t-Rev-loaded saLMPMs)其組成比例為t-Rev:Lec:PP123 = 5:2:20,在此比例下,微胞具有最佳的物理特性,包括: 平均微胞粒徑147 nm、藥物包覆率103.93% 及載藥量19.3%。
t-Rev-loaded saLMPMs在體外實驗中具有緩釋效果;在儲存安定性方面,其可在室溫儲存達56天以上,而在血漿中的安定性結果則顯示,在FBS中存在5小時後,其粒徑即會增加到大於200 nm,顯示微胞在血漿中比在PBS中更容易崩解造成析出。
在大鼠體內藥物動力學實驗的結果顯示,與IV給予t-Rev/HP-β-CD complex的組別相比,以IV給予t-Rev-loaded saLMPMs可促進t-Rev的絕對生體可用率為217%,但可維持高於預防癌症治療濃度的血中濃度仍較短(<15分鐘); 而以口服方式給予t-Rev-loaded PP123 saLMPMs則可提高絕對生體可用率至141%,且可維持高於預防癌症治療濃度的血中濃度達3小時,而若與口服給予t-Rev/HP-β-CD complex的組別(絕對生體可用率12%)相比,相對生體可用率則達到了11.4倍。上述口服生體可用率的提升代表能有更高比例的t-Rev經由腸胃道黏膜吸收並分佈到週邊組織,這使位於週邊組織的目的部位有機會達到治療濃度。
在將微胞應用為口溶膜劑型以改善Granisetron HCl (BCS Class III)生體可用率的部分,優化後的背襯層處方SGS512C具有最佳的物理特性,包括: 抗張力強度938.1mN,拉伸性438.7%,以此為基礎所建立的雙層膜GH-3310以及單層膜GH-F005系列處方,其厚度、重量均一度皆可控制在C.V.<10%內,在體外溶離試驗的結果顯示,市售對照樣品(Kytril® tablet)及單、雙層口溶膜處方皆在5分鐘內即釋出大部分藥物(>90%)並達到plateau,組別間並未顯示出顯著的溶離率差異。
在大白兔的體內試驗結果顯示,經由舌下黏膜給予單、雙層口溶膜及對照品之組別其相對生體利用率(378.21%、 252.14%、324.07%)皆比個別以口服給予經由腸胃道黏膜吸收高(276.44%、250.37%、100%)。在同為舌下黏膜給予組別的實驗結果顯示,雙層口溶膜GH-3310可能因有背襯層的存在,在一定時間內阻隔了唾液,使其生體可用率(252.14%)低於單層口溶膜(378.21%)及對照品(324.07%)的生體可用率,而在含有微胞的組別中,可能因藥物自身鹽類部位的親水性使其疏水性的化學結構部位未被緊密吸附嵌於微胞的介面上,而使得藥物未能因為微胞的助滲作用增加藥物對細胞膜的穿透能力及進一步提升生體可用率。
本研究提出的自組裝型卵磷脂混合微胞(saLMMs)是一個製程簡單、易於大量製備並具成本效益的處方,具有作為黏膜傳遞劑型平台的潛力,應用為t-Rev的口服液,可以改善t-Rev的口服生體可用率,因此具有潛力使t-Rev以口服經腸胃道黏膜吸收的方式,在體內達到治療有效性的濃度。而應用在Granisetron HCl的部分雖未更進一步增加口溶膜的生體可用率,但將藥物改為經口腔黏膜吸收的口溶膜劑型已大幅提高生體可用率,並且建立了結合載體概念的自乳化口溶膜模型,且可藉口溶膜的單、雙層設計調控藥物的釋放曲線,這對未來應用於其他不同藥物於口腔內黏膜吸收之研究,具有參考價值。
The low solubility or permeability to cell membrane limits the clinical application of BCS class II, III, IV drugs. The aim of this study is to develop a lecithin-based self-assembly mixed micellar drug delivery system(saLMMs) as vehicle platform, which can apply as various dosage types for transmucosal delivery of a target drug at different mucosal sites according to the properties and clinical limitations of the drug itself.
To improve the oral bioavailability of trans-resveratrol(t-Rev), a BCS class II drug, the saLMMs strategy was applied as oral solution dosage type. The optimized t-Rev-loaded saLMPMs are composed of t-Rev: lecithin: PP123 at a 5:2:20 ratio and provides micelles with particle size 147nm, encapsulation efficiency(EE) 103.93% and drug loading(DL) 19.3%. t-Rev-loaded saLMPMs perform sustained release profile in in-vitro dissolution test. The stability results indicate that t-Rev-loaded saLMPMs are stable at room temperature or 4℃for 56 days, but are relatively easy to collapse in plasma because of the results of micelles’ particle size increasing to >200 nm in FBS after 5hrs.
Comparing to IV administration of t-Rev/HP-β-CD complex, IV and oral administration of t-Rev-loaded PP123 saLMPMs showed an increasing absolute bioavailability to 217% and 141% individually. Comparing to oral administration of t-Rev/HP-β-CD complex, oral administration of t-Rev-loaded PP123 saLMPMs showed an increase of 11.4 fold in relative bioavailability and furnished a 3h period of time when the plasma concentration of t-Rev remained above the desired plasma concentration for chemoprevention and potentially established a therapeutically effective level at the target site. The increase in oral bioavailability means a greater portion of t-Rev preferably distributed into the peripheral compartment, potentially establishing a therapeutic level at the targeted site via GI transmucosal delivery.
To improve the bioavailability of Granisetron HCL(GH), a BCS class III drug, the saLMMs strategy was applied as mouth dissolving film(MDF) dosage type. The backing film formulation SGS512C with optimized mechanic strength was used to establish bilayer MDFs(GH-3310 series) and one layer MDFs(GH-F005 series). The uniformity in thickness and weight of the MDFs can be controlled within C.V.<10%. The results of in-vitro dissolution showed most GH(>90%) in commercial kytril® tablets(as reference) and both one layer and bilayer MDFs are released in 5 minutes. There’s no significant difference in dissolution results between all groups.
The in vivo results of rabbits showed the relative bioavailability of both MDFs(GH-3310, GH-F005) and Kytril® tablet via sublingual absorption (378.21%, 252.14%, 324.07%) are higher than via GI mucosal absorption (276.44%, 250.37%, 100%), respectively. For the results of sublingual groups, the lower relative bioavailability of bilayer GH-3310(252.14%) than one layer GH-F005(378.21%) and kytril® tablet(324.07%) may be because of its backing film reducing the drug dissolution rate. Compared to GH-3310 and GH-F005, the micelle-containing MDFs showed no further bioavailability- enhancing effects, and the reason may be the hydrophobic moiety of the chemical structure of Granisetron HCl can not tightly absorb and incorporate on the micelle interface due to the hydrophilicity of Granisetron HCl salt itself.
It was concluded that saLMMs are a simple, reproducible, ease of preparation in large-scale and cost-effective formulation, and are potential as dosage type platform for transmucosal delivery. For t-Rev, the strategy can improve the oral bioavailability and potentiate in achieving therapeutic- effective concentration at targeted sites via GI transmucosal delivery. For Granisetron HCl, though the saLMMs strategy didn’t further increase the bioavailability, which already enhanced by designed as MDF dosage type. This study still established a self-microemulsifying mouth dissolving film dosage type(SMMDF) model which combined the advantages of both saLMMs and MDFs. Also, the releasing profile of drugs can be modulated by the design of one layer or bilayer MDFs. The results are valuable for study of intraoral transmucosal delivery of other target drugs in the future.
目錄 I
附圖目錄 IV
附表目錄 VII
中文摘要 X
Abstract XII
第壹章、緒論 1
第一節、研究背景介紹 1
一、 微胞 4
二、 兩性物質 17
三、 白藜蘆醇 30
四、 口腔給予 36
五、 口溶膜 40
六、 自微乳化口溶膜 48
七、 Granisetron HCl 50
第二節、研究目的 52
第貳章、自組裝型卵磷脂混合微胞應用於T-RESVERATROL腸胃道黏膜傳遞之研究 53
第一節、 實驗材料 53
第二節、 實驗方法 55
一、 Resveratrol之高效液相層析法分析方法 55
二、 血漿中Resveratrol之高效液相層析分析方法 56
三、 溶解度試驗 58
四、 自組裝型微胞體粒子製備與評估 58
五、 安定性 61
六、 體外藥物釋放實驗 61
七、 大鼠體內之藥物動力學實驗 62
第三節、實驗結果與討論 65
一、 Resveratrol之高效液相層析法分析方法 65
二、 溶解度試驗 68
三、 自組裝型微胞體粒子製備與評估 69
四、 穿透式電子顯微鏡 74
五、 安定性 75
六、 體外藥物釋放實驗 77
七、 大鼠體內之藥物動力學實驗 78
八、 討論 82
第參章、自組裝型卵磷脂混合微胞應用於GRANISETRON HCL口腔黏膜傳遞之研究 86
第一節、 實驗材料 86
第二節、 實驗方法 87
一、 Granisetron HCl之高效液相層析法分析方法 87
二、 血漿中Granisetron HCl之UPLC/MS/MS分析方法 88
三、 口溶膜之製備 90
四、 口溶膜物理特性評估 93
五、 含量分析及體外藥物溶離實驗 94
六、 家兔體內之藥物動力學實驗 95
第三節、結果與討論 96
一、 GRANISETRON HCL之高效液相層析法分析方法 96
二、 血漿中GRANISETRON HCL之UPLC/MS/MS分析方法 96
三、 口溶膜之製備 98
四、 口溶膜物理特性評估 99
五、 含量分析及體外藥物溶離實驗 102
六、 家兔體內之藥物動力學實驗 104
第肆章、結論 109
第伍章、參考文獻 110
1.Prabhu S, Ortega M, Ma C. Novel lipid-based formulations enhancing the in vitro dissolution and permeability characteristics of a poorly water-soluble model drug, piroxicam. International journal of pharmaceutics. 2005;301(1-2):209-16.
2.Kommuru T, Gurley B, Khan M, Reddy I. Self-emulsifying drug delivery systems (SEDDS) of coenzyme Q10: formulation development and bioavailability assessment. International journal of pharmaceutics. 2001;212(2):233-46.
3.Aungst BJ. Novel formulation strategies for improving oral bioavailability of drugs with poor membrane permeation or presystemic metabolism. Journal of pharmaceutical sciences. 1993;82(10):979-87.
4.Savjani KT, Gajjar AK, Savjani JK. Drug solubility: importance and enhancement techniques. ISRN pharmaceutics. 2012;2012.
5.Torchilin VP. Micellar nanocarriers: pharmaceutical perspectives. Pharmaceutical research. 2007;24(1):1.
6.Kalepu S, Manthina M, Padavala V. Oral lipid-based drug delivery systems–an overview. Acta Pharmaceutica Sinica B. 2013;3(6):361-72.
7.Torchilin VP. Structure and design of polymeric surfactant-based drug delivery systems. Journal of controlled release. 2001;73(2-3):137-72.
8.Owen SC, Chan DP, Shoichet MS. Polymeric micelle stability. Nano Today. 2012;7(1):53-65.
9.Humberstone AJ, Charman WN. Lipid-based vehicles for the oral delivery of poorly water soluble drugs. Advanced drug delivery reviews. 1997;25(1):103-28.
10.Pouton CW. Formulation of self-emulsifying drug delivery systems. Advanced drug delivery reviews. 1997;25(1):47-58.
11.Gursoy RN, Benita S. Self-emulsifying drug delivery systems (SEDDS) for improved oral delivery of lipophilic drugs. Biomedicine & Pharmacotherapy. 2004;58(3):173-82.
12.Gershanik T, Benita S. Self-dispersing lipid formulations for improving oral absorption of lipophilic drugs. European Journal of Pharmaceutics and Biopharmaceutics. 2000;50(1):179-88.
13.Craig D, Lievens H, Pitt K, Storey D. An investigation into the physico-chemical properties of self-emulsifying systems using low frequency dielectric spectroscopy, surface tension measurements and particle size analysis. International journal of pharmaceutics. 1993;96(1-3):147-55.
14.Charman SA, Charman WN, Rogge MC, Wilson TD, Dutko FJ, Pouton CW. Self-emulsifying drug delivery systems: formulation and biopharmaceutic evaluation of an investigational lipophilic compound. Pharmaceutical research. 1992;9(1):87-93.
15.Constantinides PP. Lipid microemulsions for improving drug dissolution and oral absorption: physical and biopharmaceutical aspects. Pharmaceutical research. 1995;12(11):1561-72.
16.Zhao X, Poon Z, Engler AC, Bonner DK, Hammond PT. Enhanced stability of polymeric micelles based on postfunctionalized poly (ethylene glycol)-b-poly (γ-propargyl L-glutamate): the substituent effect. Biomacromolecules. 2012;13(5):1315-22.
17.Blanco E, Kessinger CW, Sumer BD, Gao J. Multifunctional micellar nanomedicine for cancer therapy. Experimental Biology and Medicine. 2009;234(2):123-31.
18.Jones MC, Leroux JC. Polymeric micelles–a new generation of colloidal drug carriers. European journal of pharmaceutics and biopharmaceutics. 1999;48(2):101-11.
19.Kaur IP, Singh H. Nanostructured drug delivery for better management of tuberculosis. Journal of Controlled Release. 2014;184:36-50.
20.Kore G, Kolate A, Nej A, Misra A. Polymeric micelle as multifunctional pharmaceutical carriers. Journal of nanoscience and nanotechnology. 2014;14(1):288-307.
21.Gong J, Chen M, Zheng Y, Wang S, Wang Y. Polymeric micelles drug delivery system in oncology. Journal of Controlled Release. 2012;159(3):312-23.
22.Lu Y, Park K. Polymeric micelles and alternative nanonized delivery vehicles for poorly soluble drugs. International journal of pharmaceutics. 2013;453(1):198-214.
23.Jones MC, Leroux JC. Polymeric micelles–a new generation of colloidal drug carriers. European journal of pharmaceutics and biopharmaceutics. 1999;48(2):101-11.
24.Yokoyama M. Polymeric micelles as a new drug carrier system and their required considerations for clinical trials. Expert opinion on drug delivery. 2010;7(2):145-58.
25.Maeda H, Wu J, Sawa T, Matsumura Y, Hori K. Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review. Journal of controlled release. 2000;65(1-2):271-84.
26.Maeda H, Sawa T, Konno T. Mechanism of tumor-targeted delivery of macromolecular drugs, including the EPR effect in solid tumor and clinical overview of the prototype polymeric drug SMANCS. Journal of controlled release. 2001;74(1-3):47-61.
27.Wei Z, Hao J, Yuan S, Li Y, Juan W, Sha X. Paclitaxel-loaded Pluronic P123/F127 mixed polymeric micelles: formulation, optimization and in vitro characterization. International journal of pharmaceutics. 2009;376(1-2):176-85.
28.Torchilin VP. PEG-based micelles as carriers of contrast agents for different imaging modalities. Advanced drug delivery reviews. 2002;54(2):235-52.
29.Rijcken C, Soga O, Hennink W, Van Nostrum C. Triggered destabilisation of polymeric micelles and vesicles by changing polymers polarity: an attractive tool for drug delivery. Journal of controlled release. 2007;120(3):131-48.
30.Carstens MG, Rijcken CJ, van Nostrum CF, Hennink WE. Pharmaceutical micelles: combining longevity, stability, and stimuli sensitivity. Multifunctional pharmaceutical nanocarriers: Springer; 2008. p. 263-308.
31.He G, Ma LL, Pan J, Venkatraman S. ABA and BAB type triblock copolymers of PEG and PLA: a comparative study of drug release properties and “stealth” particle characteristics. International journal of pharmaceutics. 2007;334(1-2):48-55.
32.Kwon GS. Polymeric micelles for delivery of poorly water-soluble compounds. Critical Reviews™ in Therapeutic Drug Carrier Systems. 2003;20(5).
33.Molineux G. Pegylation: engineering improved pharmaceuticals for enhanced therapy. Cancer treatment reviews. 2002;28:13-6.
34.Adams ML, Lavasanifar A, Kwon GS. Amphiphilic block copolymers for drug delivery. Journal of pharmaceutical sciences. 2003;92(7):1343-55.
35.Oerlemans C, Bult W, Bos M, Storm G, Nijsen JFW, Hennink WE. Polymeric micelles in anticancer therapy: targeting, imaging and triggered release. Pharmaceutical research. 2010;27(12):2569-89.
36.Carey MC, Small DM. The characteristics of mixed micellar solutions with particular reference to bile. The American journal of medicine. 1970;49(5):590-608.
37.Carey MC, Small DM. Micelle formation by bile salts: physical-chemical and thermodynamic considerations. Archives of internal medicine. 1972;130(4):506-27.
38.Huang CK, Lo CL, Chen HH, Hsiue GH. Multifunctional micelles for cancer cell targeting, distribution imaging, and anticancer drug delivery. Advanced Functional Materials. 2007;17(14):2291-7.
39.Kulthe S, Inamdar N, Choudhari Y, Shirolikar S, Borde L, Mourya V. Mixed micelle formation with hydrophobic and hydrophilic Pluronic block copolymers: implications for controlled and targeted drug delivery. Colloids and Surfaces B: Biointerfaces. 2011;88(2):691-6.
40.Shozo M, Noriyuki M, Hitoshi S. Improvement of absolute bioavailability of normally poorly absorbed drugs: inducement of the intestinal absorption of streptomycin and gentamycin by lipid-bile salt mixed micelles in rat and rabbit. International Journal of Pharmaceutics. 1979;2(2):101-11.
41.Mrestani Y, Behbood L, Härtl A, Neubert RH. Microemulsion and mixed micelle for oral administration as new drug formulations for highly hydrophilic drugs. European Journal of Pharmaceutics and Biopharmaceutics. 2010;74(2):219-22.
42.Mueller K. Structural dimorphism of bile salt/lecithin mixed micelles. A possible regulatory mechanism for cholesterol solubility in bile? X-ray structural analysis. Biochemistry. 1981;20(2):404-14.
43.Magee GA, French J, Gibbon B, Luscombe C. Bile salt/lecithin mixed micelles optimized for the solubilization of a poorly soluble steroid molecule using statistical experimental design. Drug development and industrial pharmacy. 2003;29(4):441-50.
44.Scott‐Moncrieff JC, Shao Z, Mitra AK. Enhancement of intestinal insulin absorption by bile salt–fatty acid mixed micelles in dogs. Journal of pharmaceutical sciences. 1994;83(10):1465-9.
45.Pithavala YK, Odishaw JL, Han S, Wiedmann TS, Zimmerman CL. Retinoid absorption from simple and mixed micelles in the rat intestine. Journal of pharmaceutical sciences. 1995;84(11):1360-5.
46.Brajtburg J, Elberg S, Travis SJ, Kobayashi GS. Treatment of murine candidiasis and cryptococcosis with amphotericin B incorporated into egg lecithin-bile salt mixed micelles. Antimicrobial agents and chemotherapy. 1994;38(2):294-9.
47.Alkan-Onyuksel H, Ramakrishnan S, Chai H-B, Pezzuto JM. A mixed micellar formulation suitable for the parenteral administration of taxol. Pharmaceutical research. 1994;11(2):206-12.
48.Hammad M, Müller B. Increasing drug solubility by means of bile salt–phosphatidylcholine-based mixed micelles. European journal of pharmaceutics and biopharmaceutics. 1998;46(3):361-7.
49.Hammad M, Müller B. Solubility and stability of tetrazepam in mixed micelles. European journal of pharmaceutical sciences. 1998;7(1):49-55.
50.Hammad MA, Müller BW. Solubility and Stability of Lorazepam in Bile Salt/Soya Phosphatidylcholine–Mixed Micelles. Drug development and industrial pharmacy. 1999;25(4):409-17.
51.Rupp C, Steckel H, Müller BW. Solubilization of poorly water-soluble drugs by mixed micelles based on hydrogenated phosphatidylcholine. International journal of pharmaceutics. 2010;395(1-2):272-80.
52.Shankland W. The equilibrium and structure of lecithin-cholate mixed micelles. Chemistry and physics of lipids. 1970;4(2):109-30.
53.Lichtenberg D, Robson RJ, Dennis EA. Solubilization of phospholipids by detergents structural and kinetic aspects. Biochimica et Biophysica Acta (BBA)-Reviews on Biomembranes. 1983;737(2):285-304.
54.Krishnadas A, Rubinstein I, Önyüksel H. Sterically stabilized phospholipid mixed micelles: in vitro evaluation as a novel carrier for water-insoluble drugs. Pharmaceutical research. 2003;20(2):297-302.
55.Chiappetta DA, Sosnik A. Poly (ethylene oxide)–poly (propylene oxide) block copolymer micelles as drug delivery agents: improved hydrosolubility, stability and bioavailability of drugs. European Journal of Pharmaceutics and Biopharmaceutics. 2007;66(3):303-17.
56.Mu L, Elbayoumi T, Torchilin V. Mixed micelles made of poly (ethylene glycol)–phosphatidylethanolamine conjugate and d-α-tocopheryl polyethylene glycol 1000 succinate as pharmaceutical nanocarriers for camptothecin. International journal of pharmaceutics. 2005;306(1-2):142-9.
57.Vakil R, Kwon GS. Poly (ethylene glycol)-b-poly (ε-caprolactone) and PEG-phospholipid form stable mixed micelles in aqueous media. Langmuir. 2006;22(23):9723-9.
58.Danson S, Ferry D, Alakhov V, Margison J, Kerr D, Jowle D. Phase I dose escalation and pharmacokinetic study of pluronic polymer-bound doxorubicin (SP1049C) in patients with advanced cancer. British journal of cancer. 2004;90(11):2085.
59.Wei, Z., Research on the sports development model of small towns in Hunan region. Forum. 2009;12:176-7.
60.Yuan G, Zili D. Self-tuning measurement fusion Kalman filter with correlated measurement noises and its convergence. 27th Chinese Control Conference. 2008.
61.Zhang W, Shi Y, Chen Y, Yu S, Hao J, Luo J. Enhanced antitumor efficacy by paclitaxel-loaded pluronic P123/F127 mixed micelles against non-small cell lung cancer based on passive tumor targeting and modulation of drug resistance. European Journal of Pharmaceutics and Biopharmaceutics. 2010;75(3):341-53.
62.Oh KT, Bronich TK, Kabanov AV. Micellar formulations for drug delivery based on mixtures of hydrophobic and hydrophilic Pluronic® block copolymers. Journal of Controlled Release. 2004;94(2-3):411-22.
63.Gaucher G, Dufresne MH, Sant VP, Kang N, Maysinger D, Leroux JC. Block copolymer micelles: preparation, characterization and application in drug delivery. Journal of controlled release. 2005;109(1-3):169-88.
64.Tyrrell ZL, Shen Y, Radosz M. Fabrication of micellar nanoparticles for drug delivery through the self-assembly of block copolymers. Progress in Polymer Science. 2010;35(9):1128-43.
65.Vangeyte P, Gautier S, Jérôme R. About the methods of preparation of poly (ethylene oxide)-b-poly (ε-caprolactone) nanoparticles in water: Analysis by dynamic light scattering. Colloids and surfaces A: physicochemical and engineering aspects. 2004;242(1-3):203-11.
66.Koval M, Preiter K, Adles C, Stahl PD, Steinberg TH. Size of IgG-opsonized particles determines macrophage response during internalization. Experimental cell research. 1998;242(1):265-73.
67.Harashima H, Sakata K, Funato K, Kiwada H. Enhanced hepatic uptake of liposomes through complement activation depending on the size of liposomes. Pharmaceutical research. 1994;11(3):402-6.
68.Moghimi SM, Hunter AC, Murray JC. Long-circulating and target-specific nanoparticles: theory to practice. Pharmacological reviews. 2001;53(2):283-318.
69.Rejman J, Oberle V, Zuhorn IS, Hoekstra D. Size-dependent internalization of particles via the pathways of clathrin-and caveolae-mediated endocytosis. Biochemical Journal. 2004;377(1):159-69.
70.Koo OM, Rubinstein I, Onyuksel H. Role of nanotechnology in targeted drug delivery and imaging: a concise review. Nanomedicine: Nanotechnology, Biology and Medicine. 2005;1(3):193-212.
71.Choi HS, Liu W, Misra P, Tanaka E, Zimmer JP, Ipe BI. Renal clearance of quantum dots. Nature biotechnology. 2007;25(10):1165.
72.Attia ABE, Ong ZY, Hedrick JL, Lee PP, Ee PLR, Hammond PT. Mixed micelles self-assembled from block copolymers for drug delivery. Current opinion in colloid & interface science. 2011;16(3):182-94.
73.Kedar U, Phutane P, Shidhaye S, Kadam V. Advances in polymeric micelles for drug delivery and tumor targeting. Nanomedicine: Nanotechnology, Biology and Medicine. 2010;6(6):714-29.
74.Mansur, HS. Quantum dots and nanocomposites. Nanomedicine and nanobiotechnology. 2010;2(2):113-29.
75.Das S, Dey J, Mukhim T, Ismail K. Effect of sodium salicylate, sodium oxalate, and sodium chloride on the micellization and adsorption of sodium deoxycholate in aqueous solutions. Journal of colloid and interface science. 2011;357(2):434-9.
76.Sigma-Aldrich. I. Sodium deoxycholate product imformation.
77.Matsuoka K, Moroi Y. Micelle formation of sodium deoxycholate and sodium ursodeoxycholate (Part 1). Biochimica et Biophysica Acta (BBA)-Molecular and Cell Biology of Lipids. 2002;1580(2):189-99.
78.Maestre A, Guardado P, Moyá ML. Thermodynamic study of bile salts micellization. Journal of Chemical & Engineering Data. 2014;59(2):433-8.
79.Hao L, Lu R, Leaist DG, Poulin PR. Aggregation number of aqueous sodium cholate micelles from mutual diffusion measurements. Journal of solution chemistry. 1997;26(2):113-25.
80.Natalini B, Sardella R, Gioiello A, Ianni F, Di Michele A, Marinozzi M. Determination of bile salt critical micellization concentration on the road to drug discovery. Journal of pharmaceutical and biomedical analysis. 2014;87:62-81.
81.Monte MJ, Marin JJ, Antelo A, Vazquez-Tato J. Bile acids: chemistry, physiology, and pathophysiology. World journal of gastroenterology: WJG. 2009;15(7):804.
82.Carey MC, Small DM. Micelle formation by bile salts: physical-chemical and thermodynamic considerations. Archives of internal medicine. 1972;130(4):506-27.
83.Carter N, Pattabiraman M, Arias LA. Dynamics of apolar guest solubilized in bile salt micelles: Photochemistry of acenaphthylene as a probe to understand the supramolecular characteristics of the aggregates. American Journal of Chemistry. 2012;2(3):131-6.
84.Almeida H, Amaral MH, Lobão P, Sousa Lobo JM. Applications of poloxamers in ophthalmic pharmaceutical formulations: an overview. Expert opinion on drug delivery. 2013;10(9):1223-37.
85.Pitto-Barry A, Barry NP. Pluronic® block-copolymers in medicine: from chemical and biological versatility to rationalisation and clinical advances. Polymer Chemistry. 2014;5(10):3291-7.
86.Batrakova EV, Kabanov AV. Pluronic block copolymers: evolution of drug delivery concept from inert nanocarriers to biological response modifiers. Journal of controlled release. 2008;130(2):98-106.
87.Batrakova EV, Li S, Alakhov VY, Miller DW, Kabanov AV. Optimal structure requirements for pluronic block copolymers in modifying P-glycoprotein drug efflux transporter activity in bovine brain microvessel endothelial cells. Journal of Pharmacology and Experimental Therapeutics. 2003;304(2):845-54.
88.Chong JY, Mulet X, Waddington LJ, Boyd BJ, Drummond CJ. Steric stabilisation of self-assembled cubic lyotropic liquid crystalline nanoparticles: high throughput evaluation of triblock polyethylene oxide-polypropylene oxide-polyethylene oxide copolymers. Soft Matter. 2011;7(10):4768-77.
89.Gelderblom H, Verweij J, Nooter K, Sparreboom A. Cremophor EL: the drawbacks and advantages of vehicle selection for drug formulation. European journal of cancer. 2001;37(13):1590-8.
90.Su CY. In vitro evaluation of anti-cancer for amphotericin B with pretreatment of ethanolic extract of Taiwanofungus camphoratus and prepartion and oral pharmacokinetic study of its micellar dosage form. Mater Thesis. 2013.
91.Sparreboom A, Loos WJ, Verweij J, de Vos AI, van der Burg ME, Stoter G. Quantitation of Cremophor EL in human plasma samples using a colorimetric dye-binding microassay. Analytical biochemistry. 1998;255(2):171-5.
92.Zhang Z, Tan S, Feng S-S. Vitamin E TPGS as a molecular biomaterial for drug delivery. Biomaterials. 2012;33(19):4889-906.
93.Company EC. Eastman Vitamin E TPGS NF applications and properties. 2005.
94.Guo Y, Luo J, Tan S, Otieno BO, Zhang Z. The applications of Vitamin E TPGS in drug delivery. European Journal of Pharmaceutical Sciences. 2013;49(2):175-86.
95.Tan Q, Liu W, Guo C, Zhai G. Preparation and evaluation of quercetin-loaded lecithin-chitosan nanoparticles for topical delivery. International journal of nanomedicine. 2011;6:1621.
96.Sandor M, Riechel A, Kaplan I, Mathiowitz E. Effect of lecithin and MgCO3 as additives on the enzymatic activity of carbonic anhydrase encapsulated in poly (lactide-co-glycolide)(PLGA) microspheres. Biochimica et Biophysica Acta (BBA)-General Subjects. 2002;1570(1):63-74.
97.Shi X, Wang Y, Ren L, Huang W, Wang DA. A protein/antibiotic releasing poly (lactic-co-glycolic acid)/lecithin scaffold for bone repair applications. International journal of pharmaceutics. 2009;373(1-2):85-92.
98.Park S, Kim J, Lim J, Kim C. Surface-modified magnetic nanoparticles with lecithin for applications in biomedicine. Current Applied Physics. 2008;8(6):706-9.
99.Ling G, Zhang P, Zhang W, Sun J, Meng X, Qin Y. Development of novel self-assembled DS-PLGA hybrid nanoparticles for improving oral bioavailability of vincristine sulfate by P-gp inhibition. Journal of controlled release. 2010;148(2):241-8.
100.Zhu N, Cui F, Hu K, Zhu L. Biomedical modification of poly (L‐lactide) by blending with lecithin. Journal of Biomedical Materials Research Part A. 2007;82(2):455-61.
101.Chumnanpuen P. Systems Biology of Yeast Lipid Metabolism: Citeseer; 2012.
102.Chu J, Cheng YL, Rao AV, Nouraei M, Zarate-Muñoz S, Acosta EJ. Lecithin-linker formulations for self-emulsifying delivery of nutraceuticals. International journal of pharmaceutics. 2014;471(1-2):92-102.
103.Acosta EJ, Nguyen T, Witthayapanyanon A, Harwell JH, Sabatini DA. Linker-based bio-compatible microemulsions. Environmental science & technology. 2005;39(5):1275-82.
104.Ujhelyi Z, Fenyvesi F, Váradi J, Fehér P, Kiss T, Veszelka S. Evaluation of cytotoxicity of surfactants used in self-micro emulsifying drug delivery systems and their effects on paracellular transport in Caco-2 cell monolayer. European Journal of Pharmaceutical Sciences. 2012;47(3):564-73.
105.Kimura I. Medical benefits of using natural compounds and their derivatives having multiple pharmacological actions. Yakugaku Zasshi. 2006;126(3):133-43.
106.Gupta SC, Kim JH, Prasad S, Aggarwal BB. Regulation of survival, proliferation, invasion, angiogenesis, and metastasis of tumor cells through modulation of inflammatory pathways by nutraceuticals. Cancer and Metastasis Reviews. 2010;29(3):405-34.
107.Pan MH, Lai CS, Dushenkov S, Ho CT. Modulation of inflammatory genes by natural dietary bioactive compounds. Journal of agricultural and food chemistry. 2009;57(11):4467-77.
108.Harvey AL, Clark RL, Mackay SP, Johnston BF. Current strategies for drug discovery through natural products. Expert opinion on drug discovery. 2010;5(6):559-68.
109.Arakawa R, Yamaguchi M, Hotta H, Osakai T, Kimoto T. Product analysis of caffeic acid oxidation by on-line electrochemistry/electrospray ionization mass spectrometry. Journal of the American Society for Mass Spectrometry. 2004;15(8):1228-36.
110.Coimbra M, Isacchi B, van Bloois L, Torano JS, Ket A, Wu X. Improving solubility and chemical stability of natural compounds for medicinal use by incorporation into liposomes. International journal of pharmaceutics. 2011;416(2):433-42.
111.Wang S, Su R, Nie S, Sun M, Zhang J, Wu D. Application of nanotechnology in improving bioavailability and bioactivity of diet-derived phytochemicals. The Journal of nutritional biochemistry. 2014;25(4):363-76.
112.Goswami SK, Das DK. Resveratrol and chemoprevention. Cancer Letters. 2009;284(1):1-6.
113.Chan WK, Delucchi AB. Resveratrol, a red wine constituent, is a mechanism-based inactivator of cytochrome P450 3A4. Life sciences. 2000;67(25):3103-12.
114.Soleas GJ, Diamandis EP, Goldberg DM. Resveratrol: a molecule whose time has come? And gone? Clinical biochemistry. 1997;30(2):91-113.
115.Neves AR, Lúcio M, Martins S, Lima JLC, Reis S. Novel resveratrol nanodelivery systems based on lipid nanoparticles to enhance its oral bioavailability. International Journal of Nanomedicine. 2013;8:177.
116.Tomé-Carneiro J, Larrosa M, González-Sarrías A, A Tomas-Barberan F, Teresa Garcia-Conesa M, Carlos-Espin J. Resveratrol and clinical trials: the crossroad from in vitro studies to human evidence. Current pharmaceutical design. 2013;19(34):6064-93.
117.Neves AR, Lucio M, Lima JLC, Reis S. Resveratrol in medicinal chemistry: a critical review of its pharmacokinetics, drug-delivery, and membrane interactions. Current medicinal chemistry. 2012;19(11):1663-81.
118.Ramassamy C. Emerging role of polyphenolic compounds in the treatment of neurodegenerative diseases: a review of their intracellular targets. European journal of pharmacology. 2006;545(1):51-64.
119.Sergides C, Chirilă M, Silvestro L, Pitta D, Pittas A. Bioavailability and safety study of resveratrol 500 mg tablets in healthy male and female volunteers. Experimental and therapeutic medicine. 2016;11(1):164-70.
120.Varoni EM, Lo Faro AF, Sharifi-Rad J, Iriti M. Anticancer molecular mechanisms of resveratrol. Frontiers in nutrition. 2016;3:8.
121.Boocock DJ, Faust GE, Patel KR, Schinas AM, Brown VA, Ducharme MP. Phase I dose escalation pharmacokinetic study in healthy volunteers of resveratrol, a potential cancer chemopreventive agent. Cancer Epidemiology and Prevention Biomarkers. 2007;16(6):1246-52.
122.Vaz-da-Silva M, Loureiro A, Falcao A, Nunes T, Rocha J, Fernandes-Lopes C. Effect of food on the pharmacokinetic profile of trans-resveratrol. Int J Clin Pharmacol Ther. 2008;46(11):564-70.
123.Almeida L, Vaz‐da‐Silva M, Falcão A, Soares E, Costa R, Loureiro AI. Pharmacokinetic and safety profile of trans‐resveratrol in a rising multiple‐dose study in healthy volunteers. Molecular nutrition & food research. 2009;53(S1).
124.Nunes T, Almeida L, Rocha JF, Falcão A, Fernandes‐Lopes C, Loureiro AI. Pharmacokinetics of Trans‐resveratrol Following Repeated Administration in Healthy Elderly and Young Subjects. The Journal of Clinical Pharmacology. 2009;49(12):1477-82.
125.la Porte C, Voduc N, Zhang G, Seguin I, Tardiff D, Singhal N. Steady-state pharmacokinetics and tolerability of trans-resveratrol 2000mg twice daily with food, quercetin and alcohol (ethanol) in healthy human subjects. Clinical pharmacokinetics. 2010;49(7):449-54.
126.Kapetanovic IM, Muzzio M, Huang Z, Thompson TN, McCormick DL. Pharmacokinetics, oral bioavailability, and metabolic profile of resveratrol and its dimethylether analog, pterostilbene, in rats. Cancer chemotherapy and pharmacology. 2011;68(3):593-601.
127.Amiot MJ, Romier B, Dao T-MA, Fanciullino R, Ciccolini J, Burcelin R. Optimization of trans-Resveratrol bioavailability for human therapy. Biochimie. 2013;95(6):1233-8.
128.Azachi M, Yatuv R, Katz A, Hagay Y, Danon A. A novel red grape cells complex: health effects and bioavailability of natural resveratrol. International journal of food sciences and nutrition. 2014;65(7):848-55.
129.Stervbo U, Vang O, Bonnesen C. A review of the content of the putative chemopreventive phytoalexin resveratrol in red wine. Food Chemistry. 2007;101(2):449-57.
130.Bertelli A, Giovannini L, Bernini W, Migliori M, Fregoni M, Bavaresco L. Antiplatelet activity of cis-resveratrol. Drugs under experimental and clinical research. 1996;22(2):61-3.
131.Vian MA, Tomao V, Gallet S, Coulomb P, Lacombe J. Simple and rapid method for cis-and trans-resveratrol and piceid isomers determination in wine by high-performance liquid chromatography using Chromolith columns. Journal of Chromatography A. 2005;1085(2):224-9.
132.Amri A, Chaumeil J, Sfar S, Charrueau C. Administration of resveratrol: what formulation solutions to bioavailability limitations? Journal of Controlled Release. 2012;158(2):182-93.
133.Trela BC, Waterhouse AL. Resveratrol: isomeric molar absorptivities and stability. Journal of Agricultural and Food Chemistry. 1996;44(5):1253-7.
134.Cottart CH, Nivet‐Antoine V, Laguillier‐Morizot C, Beaudeux JL. Resveratrol bioavailability and toxicity in humans. Molecular nutrition & food research. 2010;54(1):7-16.
135.Walle T, Hsieh F, DeLegge MH, Oatis JE, Walle UK. High absorption but very low bioavailability of oral resveratrol in humans. Drug metabolism and disposition. 2004;32(12):1377-82.
136.Singh G, Pai RS. Trans-resveratrol self-nano-emulsifying drug delivery system (SNEDDS) with enhanced bioavailability potential: optimization, pharmacokinetics and in situ single pass intestinal perfusion (SPIP) studies. Drug delivery. 2015;22(4):522-30.
137.Goldberg DM, Yan J, Soleas GJ. Absorption of three wine-related polyphenols in three different matrices by healthy subjects. Clinical biochemistry. 2003;36(1):79-87.
138.Vitaglione P, Sforza S, Galaverna G, Ghidini C, Caporaso N, Vescovi PP. Bioavailability of trans‐resveratrol from red wine in humans. Molecular nutrition & food research. 2005;49(5):495-504.
139.Wenzel E, Somoza V. Metabolism and bioavailability of trans‐resveratrol. Molecular nutrition & food research. 2005;49(5):472-81.
140.Liang L, Liu X, Wang Q, Cheng S, Zhang S, Zhang M. Pharmacokinetics, tissue distribution and excretion study of resveratrol and its prodrug 3, 5, 4''-tri-O-acetylresveratrol in rats. Phytomedicine. 2013;20(6):558-63.
141.Bertelli A, Bertelli A, Gozzini A, Giovannini L. Plasma and tissue resveratrol concentrations and pharmacological activity. Drugs under experimental and clinical research. 1998;24(3):133-8.
142.Vitrac X, Desmouliere A, Brouillaud B, Krisa S, Deffieux G, Barthe N. Distribution of [14C]-trans-resveratrol, a cancer chemopreventive polyphenol, in mouse tissues after oral administration. Life sciences. 2003;72(20):2219-33.
143.Lancon A, Delma D, Osman H, Thénot J-P, Jannin B, Latruffe N. Human hepatic cell uptake of resveratrol: involvement of both passive diffusion and carrier-mediated process. Biochemical and biophysical research communications. 2004;316(4):1132-7.
144.Glatz JF, van der Vusse GJ. Cellular fatty acid-binding proteins: their function and physiological significance. Progress in lipid research. 1996;35(3):243-82.
145.Williams LD, Burdock GA, Edwards JA, Beck M, Bausch J. Safety studies conducted on high-purity trans-resveratrol in experimental animals. Food and Chemical Toxicology. 2009;47(9):2170-82.
146.Schmitt E, Lehmann L, Metzler M, Stopper H. Hormonal and genotoxic activity of resveratrol. Toxicology letters. 2002;136(2):133-42.
147.Jang M, Cai L, Udeani GO, Slowing KV, Thomas CF, Beecher CW. Cancer chemopreventive activity of resveratrol, a natural product derived from grapes. Science. 1997;275(5297):218-20.
148.Wang Q, Xu J, Rottinghaus GE, Simonyi A, Lubahn D, Sun GY. Resveratrol protects against global cerebral ischemic injury in gerbils. Brain research. 2002;958(2):439-47.
149.Kuršvietienė L, Stanevičienė I, Mongirdienė A, Bernatonienė J. Multiplicity of effects and health benefits of resveratrol. Medicina. 2016;52(3):148-55.
150.Chang CW, Wong CY, Wu YT, Hsu MC. Development of a solid dispersion system for improving the oral bioavailability of resveratrol in rats. European journal of drug metabolism and pharmacokinetics. 2017;42(2):239-49.
151.Zhou J, Zhou M, Yang F-F, Liu CY, Pan RL, Chang Q. Involvement of the inhibition of intestinal glucuronidation in enhancing the oral bioavailability of resveratrol by labrasol containing nanoemulsions. Molecular pharmaceutics. 2015;12(4):1084-95.
152.Balata GF, Essa EA, Shamardl HA, Zaidan SH, Abourehab MA. Self-emulsifying drug delivery systems as a tool to improve solubility and bioavailability of resveratrol. Drug design, development and therapy. 2016;10:117.
153.Pandita D, Kumar S, Poonia N, Lather V. Solid lipid nanoparticles enhance oral bioavailability of resveratrol, a natural polyphenol. Food research international. 2014;62:1165-74.
154.Ramalingam P, Ko YT. Improved oral delivery of resveratrol from N-trimethyl chitosan-g-palmitic acid surface-modified solid lipid nanoparticles. Colloids and Surfaces B: Biointerfaces. 2016;139:52-61.
155.Singh G, Pai RS. In‐vitro/in‐vivo characterization of trans‐resveratrol‐loaded nanoparticulate drug delivery system for oral administration. Journal of Pharmacy and Pharmacology. 2014;66(8):1062-76.
156.Singh G, Pai RS. Optimized PLGA nanoparticle platform for orally dosed trans-resveratrol with enhanced bioavailability potential. Expert opinion on drug delivery. 2014;11(5):647-59.
157.Penalva R, Esparza I, Larraneta E, González-Navarro CJ, Gamazo C, Irache JM. Zein-based nanoparticles improve the oral bioavailability of resveratrol and its anti-inflammatory effects in a mouse model of endotoxic shock. Journal of agricultural and food chemistry. 2015;63(23):5603-11.
158.Narayanan NK, Nargi D, Randolph C, Narayanan BA. Liposome encapsulation of curcumin and resveratrol in combination reduces prostate cancer incidence in PTEN knockout mice. International Journal of Cancer. 2009;125(1):1-8.
159.Xiao L, Yi T, Liu Y. A new self-microemulsifying mouth dissolving film to improve the oral bioavailability of poorly water soluble drugs. Drug development and industrial pharmacy. 2013;39(9):1284-90.
160.Amorij JP, Hinrichs WL, Frijlink HW, Wilschut JC, Huckriede A. Needle-free influenza vaccination. The Lancet infectious diseases. 2010;10(10):699-711.
161.Harris D, Robinson JR. Drug delivery via the mucous membranes of the oral cavity. Journal of pharmaceutical sciences. 1992;81(1):1-10.
162.Kraan H, Vrieling H, Czerkinsky C, Jiskoot W, Kersten G, Amorij JP. Buccal and sublingual vaccine delivery. Journal of controlled release. 2014;190:580-92.
163.Morales JO, McConville JT. Manufacture and characterization of mucoadhesive buccal films. European Journal of Pharmaceutics and Biopharmaceutics. 2011;77(2):187-99.
164.Zhang H, Zhang J, Streisand JB. Oral mucosal drug delivery. Clinical pharmacokinetics. 2002;41(9):661-80.
165.Guidance for Industry: Orally Disintegrating Tablets, Center for Drug Evaluation and Research (Centre for Drug Evaluation and Research, CDER) US FDA. 2008.
166.Barnhart S, Sloboda M. The future of dissolvable films. Drug Deliv Technol. 2007;7(8):34-7.
167.Vondrak B, Barnhart S. Dissolvable films: dissolvable films for flexible product format in drug delivery. Pharmaceutical Technology. 2008;32(4):s20.
168.Pattewar SV, Kasture SB, Pande VV, Sharma SK. A New Self Microemulsifying Mouth Dissolving Film. Indian J Pharm Educ Res. 2016;50(Suppl 3):S191-99.
169.Nagaraju T, Gowthami R, Rajashekar M, Kumar YS. Comprehensive review on oral disintegrating films. Current Trends in Biotechnology and Pharmacy. 2012;6(3):255-75.
170.Xiao L, Yi T, Liu Y. A new self-microemulsifying mouth dissolving film to improve the oral bioavailability of poorly water soluble drugs. Drug development and industrial pharmacy. 2013;39(9):1284-90.
171.Wada I, Takeda T, Sato M, Saitoh H, Nakabayashi T, Mino K. Pharmacokinetics of granisetron in adults and children with malignant diseases. Biological and Pharmaceutical Bulletin. 2001;24(4):432-5.
172.Cázares-Delgadillo J, Ganem-Rondero A, Quintanar-Guerrero D, López-Castellano AC, Merino V, Kalia YN. Using transdermal iontophoresis to increase granisetron delivery across skin in vitro and in vivo: effect of experimental conditions and a comparison with other enhancement strategies. European Journal of Pharmaceutical Sciences. 2010;39(5):387-93.
173.Van Wijngaarden I, Tulp MTM, Soudijn W. The concept of selectivity in 5-HT receptor research. European Journal of Pharmacology: Molecular Pharmacology. 1990;188(6):301-12.
174.Tan M. Granisetron: new insights into its use for the treatment of chemotherapy-induced nausea and vomiting. Expert opinion on pharmacotherapy. 2003;4(9):1563-71.
175.Aapro M. Granisetron: an update on its clinical use in the management of nausea and vomiting. The oncologist. 2004;9(6):673-86.
176.Pinguet F, Bressolle F, Martel P, Salabert D, Astre C. High-performance liquid chromatographic determination of granisetron in human plasma. Journal of Chromatography B: Biomedical Sciences and Applications. 1996;675(1):99-105.
177.Cho HJ, Balakrishnan P, Shim WS, Chung SJ, Shim CK, Kim DD. Characterization and in vitro evaluation of freeze-dried microparticles composed of granisetron–cyclodextrin complex and carboxymethylcellulose for intranasal delivery. International journal of pharmaceutics. 2010;400(1-2):59-65.
178.Zweers ML, Grijpma DW, Engbers GH, Feijen J. The preparation of monodisperse biodegradable polyester nanoparticles with a controlled size. Journal of Biomedical Materials Research Part B: Applied Biomaterials. 2003;66(2):559-66.
179.Yen FL, Wu TH, Lin LT, Cham TM, Lin CC. Nanoparticles formulation of Cuscuta chinensis prevents acetaminophen-induced hepatotoxicity in rats. Food and chemical toxicology. 2008;46(5):1771-7.
180.Abdelbary GA, Tadros MI. Brain targeting of olanzapine via intranasal delivery of core–shell difunctional block copolymer mixed nanomicellar carriers: in vitro characterization, ex vivo estimation of nasal toxicity and in vivo biodistribution studies. International journal of pharmaceutics. 2013;452(1-2):300-10.
181.Pepić I, Lovrić J, Hafner A, Filipović-Grčić J. Powder form and stability of Pluronic mixed micelle dispersions for drug delivery applications. Drug development and industrial pharmacy. 2014;40(7):944-51.
182.Zhao Y, Li Y, Ge J, Li N, Li L-B. Pluronic-poly (acrylic acid)-cysteine/Pluronic L121 mixed micelles improve the oral bioavailability of paclitaxel. Drug development and industrial pharmacy. 2014;40(11):1483-93.
183.Lee ES, Oh YT, Youn YS, Nam M, Park B, Yun J. Binary mixing of micelles using Pluronics for a nano-sized drug delivery system. Colloids and Surfaces B: Biointerfaces. 2011;82(1):190-5.
184.Augustin MA, Sanguansri L, Lockett T. Nano‐and micro‐encapsulated systems for enhancing the delivery of resveratrol. Annals of the New York Academy of Sciences. 2013;1290(1):107-12.
185.Colom H, Alfaras I, Maijó M, Juan ME, Planas JM. Population pharmacokinetic modeling of trans-resveratrol and its glucuronide and sulfate conjugates after oral and intravenous administration in rats. Pharmaceutical research. 2011;28(7):1606.
186.Das S, Lin H-S, Ho PC, Ng KY. The impact of aqueous solubility and dose on the pharmacokinetic profiles of resveratrol. Pharmaceutical research. 2008;25(11):2593-600.
187.Juan ME, Maijó M, Planas JM. Quantification of trans-resveratrol and its metabolites in rat plasma and tissues by HPLC. Journal of pharmaceutical and biomedical analysis. 2010;51(2):391-8.
188.Meng J, Guo F, Xu H, Liang W, Wang C, Yang XD. Combination therapy using co-encapsulated resveratrol and paclitaxel in liposomes for drug resistance reversal in breast cancer cells in vivo. Scientific Reports. 2016;6:22390.
189.Vijayakumar MR, Vajanthri KY, Balavigneswaran CK, Mahto SK, Mishra N, Muthu MS. Pharmacokinetics, biodistribution, in vitro cytotoxicity and biocompatibility of Vitamin E TPGS coated trans resveratrol liposomes. Colloids and Surfaces B: Biointerfaces. 2016;145:479-91.
190.Marier J-F, Vachon P, Gritsas A, Zhang J, Moreau JP, Ducharme MP. Metabolism and disposition of resveratrol in rats: extent of absorption, glucuronidation, and enterohepatic recirculation evidenced by a linked-rat model. Journal of Pharmacology and Experimental Therapeutics. 2002;302(1):369-73.
191.Johnson JJ, Nihal M, Siddiqui IA, Scarlett CO, Bailey HH, Mukhtar H. Enhancing the bioavailability of resveratrol by combining it with piperine. Molecular nutrition & food research. 2011;55(8):1169-76.
192.Caddeo C, Manconi M, Fadda AM, Lai F, Lampis S, Diez-Sales O. Nanocarriers for antioxidant resveratrol: formulation approach, vesicle self-assembly and stability evaluation. Colloids and Surfaces B: Biointerfaces. 2013;111:327-32.
193.Lund KC, Pantuso T. Combination effects of quercetin, resveratrol and curcumin on in vitro intestinal absorption. Journal of Restorative Medicine. 2014;3(1):112-20.
電子全文 電子全文(本篇電子全文限研究生所屬學校校內系統及IP範圍內開放)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
1. 利用高滲透長滯留效應及雙特異抗體標靶遞送磷脂質穩定化奈米微膠體藥物來增加化療藥物治療: 物化及生物藥劑特性評估
2. 利用Pluronic Lecithin Organogels (PLOs) 承載Docetaxel及Cisplatin作為局部治療提高療效且達到協同結合作用之新穎性應用
3. Development of sublingual dripping pill delivery system for improving the oral bioavailability of Curcumin, Quercetin and Resveratrol in Rabbits
4. 人體血清白蛋白奈米顆粒負載烷化聚乙烯亞胺/質體之複合體以非共價鍵結CRISPR/Cas9 質體或siRNA中斷或沉默PD-L1表現應用於免疫治療
5. 有效達成口服化療療效之共口服投與化療藥物自微乳化藥物傳遞系統搭配胃滯留藥物傳遞系統與植物性醣蛋白暨代謝酵素雙效抑制劑多元組合之臨床轉譯研究
6. 自組裝型混合微胞體系統為口服及經皮控釋輸送技術平台之研發
7. 香菸萃取物促進口腔上皮癌細胞增生之機轉研究
8. 台灣成人高劑量甲氧氯普胺暴露與高風險帕金森氏症之關聯:以全國人口為基礎之世代研究
9. 探討胃酸分泌抑制劑對上消化道疾病患者罹患失智症風險性的影響
10. 新穎性血清蛋白質之丙二醛修飾α-2-巨球蛋白胜肽自體抗體同型於台灣女性紅斑性狼瘡病人之探討
11. 咀嚼肌功能改變之於上顎顏面骨縫骨生長發育的影響
12. 鎘污染土地之土壤性質對其生物可及性與生物有效性之影響
13. 母親孕期生活習慣對子代健康與發展影響-以世代研究探討
14. 以SH-SY5Y細胞模式與東莨菪鹼誘導動物模式探討白藜蘆醇與其結構類似物之神經保護作用
15. 台灣免疫介導發炎性疾病相關生物製劑的利用及費用之趨勢分析 (2003-2016)