References
1. 吳姿蓉。建構新型病毒的應用: 基因改造之蕪菁黃化嵌紋病毒自行組裝之奈米材料。碩士論文,國立中興大學生物科技研究所,2005。2. Allen, M., Bulte, M.J., Liepold, L., Basu, G., Zywicke, H.A., Frank, J.A., Young, M. and Douglas, T. 2005. Paramagnetic Viral Nanoparticles as Potential High-Relaxivity Magnetic Resonance Contrast Agents. Magnetic Resonance in Medicine 54:807–812.
3. Bozarth, C.S., Weiland, J.J. and Dreher, T.W. 1992. Expression of ORF-69 of turnip yellow mosaic virus is necessary for viral spread in plants. Virology 187:124-130.
4. Bransom, K.L., Weiland, J.J., Tsai, C.H. and Dreher, T.W. 1995. Coding density of the turnip yellow mosaic virus genome: roles of the overlapping coat protein and p206-readthough coding region. Virology 206:403-412.
5. Canady, M.A., Larson, S.B., Day, J. and McPherson, A. 1996. Crystal structure of turnip yellow mosaic virus. Nat. Struct. Biol. 3:771-781.
6. Chatterji, A., Ochoa, W., Shamieh, L., Salakian, S.P., Wong, S.M., Clinton, G., Lin, T. and Johnson J.E. 2004. Chemical conjugation of heterologous proteins on the surface of cowpea mosaic virus. Bioconjug Chem 15:807-13.
7. Chatterji, A., Ochoa, W.F., Ueno, T., Lin, T. and Johnson, J.E. 2005. A virus-based nanoblock with tunable electrostatic properties. Nano letters 5:597-602.
8. Chen, J., Li, W.X., Xie, D.X., Peng, J.R. and Ding, S.W. 2004. Viral virulence protein suppresses RNAi mediated defense but upregulates the role of miRNA in host gene expression. The Plant cell 16:1302-1313.
9. Chen, C., Daniel, M.C., Quinkert, Z.T., De, M., Stein, B., Bowman, V.D., Chipman, P.R., Rotello, V.M., Kao, C.C. and Dragnea, B. 2006. Nanoparticle-templated assembly of viral protein cages. Nano letters 6: 611-615.
10. Douglas, T. and Young, M. 1998. Host-guest encapsulation of materials by assembled virus protein cages. Nature 393:152-155.
11. Douglas, T., Strable, E., Willits, D., Aitouchen, A., Libera, M. and Young, M. 2002. Protein engineering of a viral cage for constrained nanomaterials synthesis. Advanced materials 14:415-418.
12. Douglas, T., and Young, M. 2006. Viruses: Marking Friends with old foes. Science 312:573-875.
13. Dragnea, B., Chen, C., Kwak, E.S., Stein, B. and Kao, C.C. 2003. Gold nanoparticles as spectroscopic enhancers for in vitro studies on single viruses. J. Am. Chem. Soc. 125:6374-6375.
14. Dreher, T.W., Tsai, C.H. and Skuzeski, J.M. 1996. Aminoacylation identity switch of turnip yellow mosaic virus RNA from valine to methionine results in an infectious virus. Proc. Natl Acad. Sci.93:12212-12216.
15. Dreher, T.W. 2004. Turnip yellow mosaic virus: transfer RNA mimicry, chloroplasts and a C-rich genome. Molecular plant pathology 5:367-375.
16. Finch, J.T. and Klug, A. 1966. Arrangement of protein subunits and the distribution of nucleic acid in turnip yellow mosaic virus: electron microscopic studies. J. Mol. Biol.15:344-364.
17. Flenniken, M.L., Willits, D.A., Harmsen, A.L., Liepold, L.O., Harmsen, A.G., Young, M.J. and Douglas, T. 2006. Melanoma and lymphocyte cell-specific targeting incorporated into a heat shock protein cage architecture. Chem Biol 13:161-70.
18. Lane, L. 1986. Propagation and purification of RNA plant virus. Methods Emzymol 118:687-696.
19. Leimkuhler, M., Goldbeck, A., Lechner, M.D., Adrian, M., Michels, B. and Witz, J. 2001. The formation of empty shells upon pressure induced decapsidation of turnip yellow mosaic virus. Archives of virology 146:653-667.
20. Liu, W.L., Alim, K. and Balandin, A.A. 2005. Assembly and characterization of hybrid virus-inorganic nanotubes. Appl. Phys. Lett. 86:253108-253108-3.
21. Ho, Y.P., Kung, M.C., Yang, S. and Wang, T.H. 2005. Multiplexed hybridization detection with multicolor colocalization of quantum dot nanoprobes. Nano Letters 5:1693-1697.
22. Markham, R. and Smith, K.M. 1946. A new crystalline plant virus. Nature 157:300.
23. Matthews, R.E. F. 1991. Plant Virology, 3rd edn. San Diego:Academic press, lnc.
24. Mellema, J.R., Benicourt, C., Haenni, A.L., Noort, A., Pleij, C.W. and Bosch, L. 1979. Translational studies with turnip yellow mosaic virus isolated from major and minor virus particles. Virology 96:38-46.
25. Morch, M.D., Boyer, J.C. and Haenni, A.L. 1988. Overlapping open reasing frames revealed by complete nucleotide sequencing of turnip yellow mosaic virus genomic RNA. Nucleic Acids Res 16:6157-6173.
26. Sapsford, K.E., Soto, C.M., Blum, A.S., Chatterji, A., Lin, T., Johnson, J.E., Ligler, F.S. and Ratna, B.R. 2006. A cowpea mosaic virus nanoscaffold for multiplexed antibody conjugation: application as an immunoassay tracer. Biosensor and Bioelectronics 8:1668-1673.
27. Speir, J.A., Munshi, S., Wang, G., Baker, T.S. and Johnson, J.E. 1995. Structures of the native and swollen forms of cowpea chlorotic mottle virus determined by X-ray crystallography and cryo-electron microscopy. Structure 15:63-78.
28. Storhoff, J.J., Lucas, A.D., Garimella, V., Bao, Y.P. and Muller, U.R. 2004. Homogeneous detection of unamplified genomic DNA sequence based on colorimetric scatter of gold nanoparticle probes. Nature biotechnology 22:883-887.
29. Wang, Q., Lin, T., Johnson, J.E. and Finn, M.G. 2002. Natural supramolecular building blocks: cysteine-added mutants of cowpea mosaic virus. Chemistry and Biology 9:813-819.
30. Wang, Q., Kaltgrad, E., Lin, T., Johnson, J.E. and Finn, M.G. 2002 Natural supramolecular building blocks: wild-type cowpea mosaic virus. Chemistry and Biology 9:805-811.
31. Weiland, J.J. and Dreher, T.W. 1989. Infectious TYMV RNA from cloned cDNA: effects in vitro and in vivo of point substitutions in the initiation codons of two extensively overlapping ORFs. Nucleic Acids Res.17:4675-4687.