跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.176) 您好!臺灣時間:2025/09/09 23:58
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳佩吟
研究生(外文):Pei-Yin Chen
論文名稱:發展以蕪菁黃化嵌紋病毒顆粒為生物感測器之奈米材料的研究
論文名稱(外文):Development of Turnip Yellow Mosaic Virus Particles as Nanomaterial for Biosensor
指導教授:蔡慶修蔡慶修引用關係
指導教授(外文):Ching-Hsiu Tsai
學位類別:碩士
校院名稱:國立中興大學
系所名稱:生物科技學研究所
學門:生命科學學門
學類:生物科技學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:英文
論文頁數:35
中文關鍵詞:蕪菁黃化嵌紋病毒生物感測器奈米材料
外文關鍵詞:Turnip yellow mosaic virusBiosensorNanotechnology.
相關次數:
  • 被引用被引用:0
  • 點閱點閱:156
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
蕪菁黃化嵌紋病毒(Turnip yellow mosaic virus ;TYMV)主要感染十字花科植物,病毒顆粒本身是一正二十面體球形病毒,直徑大小為28nm;主要由180個鞘蛋白單元包裹一條正股長6.3 kb的核醣核酸基因體。目前的蛋白質檢測方式多採用酵素結合免疫吸附法(Enzyme-linked Immunosobent Assay; ELISA),但是礙於常用的avidin的結合位有限,使敏感度無法很高,如果我們能夠將修飾過的病毒顆粒來取代avidin,則其將有近百個接位能夠用來增加訊息,其敏感度應該可以被放大。故我們以遺傳工程的技術在鞘蛋白的C-端額外加入一個含有硫根官能基的氨基酸(Cysteine),進一步我們可以藉由這些額外的硫根官能基,將此病毒發展成一種新的奈米元件,可以用於生物感測器的研發。目前我們已成功的得到突變病毒(TYMV/Cys),且其感染力與野生型的病毒相似。我們檢測TYMV/Cys以及野生型病毒顆粒表面所含的一些功能性官能基,發現TYMV/Cys病毒顆粒表面至少有100個硫根官能基能夠被用來接各種目標辨識分子,而野生型病毒顆粒表面則沒有硫根官能。TYMV/Cys病毒顆粒表面與野生型一樣都至少有400個氨根官能基能被用來接偵測訊號分子。目前正著手進行的工作包括TYMV/Cys病毒顆粒表面硫根官能基與胡瓜嵌紋病毒鞘蛋白抗體的接合反應,以及TYMV/Cys病毒顆粒表面氨根官能基與螢光訊號分子的接合反應。利用重組病毒顆粒,我們期望可以發展出高效率的生物感測器。
Turnip yellow mosaic virus is an icosahedral plant virus, 28nm in diameter. The viral particle, composed of a 6.3 kb single-strand positive-sense RNA genome encapsidated by 180 copies of capsid protein, offers a uniquely programmable biological nanoscaffold for multiplexed conjugation. Our interest is to create a multivalent display system which would dramatically enhance the sensitivity of conventional ELISA. To achieve this objective, we used molecular techniques to create a recombinant virus that has an extra cysteine residue which chemically is highly active, at the C-terminus of the coat protein. Fluorescein-5-maleimide and Fluorescein N-hydroxysuccinimide were used to determine the number of the exposed thiol-groups and amine-groups, respectively, on the surface of the virus particles. Fluorescein-5-maleimide did not label the wild-type particles suggested that there are no cysteines on the surface, whereas the surface of the mutant particles were strongly labeled at least higher than 100 thiol-groups per particle. Fluorescein N-hydroxysuccinimide labeled the wild-type and the mutant particles with similar efficiency 400 amine-groups on the particle surface were estimated from the labeling intensity. Fluorescence labeling of fluorescein N-hydroxysuccinimide on the virus particle was successful, and the conjugation of an antibody to the virus particle is in progress. The efficiency of this nanobiosensor will be tested in the future.
目錄
頁次

壹、中文摘要 ------------------------------------------- 1
貳、英文摘要 --------------------------------------------2
參、前人研究 --------------------------------------------3
肆、內文 ------------------------------------------------6
簡介 (Introduction) ---------------------------------6
材料與方法 (Materials and Methods) ------------------10
結果 (Results) --------------------------------------13
討論 (Discussion) -----------------------------------17
圖表與說明 (Figure and legend) ----------------------19
參考文獻 (References) -------------------------------31
伍、結論 ------------------------------------------------35
References

1. 吳姿蓉。建構新型病毒的應用: 基因改造之蕪菁黃化嵌紋病毒自行組裝之奈米材料。碩士論文,國立中興大學生物科技研究所,2005。

2. Allen, M., Bulte, M.J., Liepold, L., Basu, G., Zywicke, H.A., Frank, J.A., Young, M. and Douglas, T. 2005. Paramagnetic Viral Nanoparticles as Potential High-Relaxivity Magnetic Resonance Contrast Agents. Magnetic Resonance in Medicine 54:807–812.

3. Bozarth, C.S., Weiland, J.J. and Dreher, T.W. 1992. Expression of ORF-69 of turnip yellow mosaic virus is necessary for viral spread in plants. Virology 187:124-130.

4. Bransom, K.L., Weiland, J.J., Tsai, C.H. and Dreher, T.W. 1995. Coding density of the turnip yellow mosaic virus genome: roles of the overlapping coat protein and p206-readthough coding region. Virology 206:403-412.

5. Canady, M.A., Larson, S.B., Day, J. and McPherson, A. 1996. Crystal structure of turnip yellow mosaic virus. Nat. Struct. Biol. 3:771-781.

6. Chatterji, A., Ochoa, W., Shamieh, L., Salakian, S.P., Wong, S.M., Clinton, G., Lin, T. and Johnson J.E. 2004. Chemical conjugation of heterologous proteins on the surface of cowpea mosaic virus. Bioconjug Chem 15:807-13.

7. Chatterji, A., Ochoa, W.F., Ueno, T., Lin, T. and Johnson, J.E. 2005. A virus-based nanoblock with tunable electrostatic properties. Nano letters 5:597-602.

8. Chen, J., Li, W.X., Xie, D.X., Peng, J.R. and Ding, S.W. 2004. Viral virulence protein suppresses RNAi mediated defense but upregulates the role of miRNA in host gene expression. The Plant cell 16:1302-1313.

9. Chen, C., Daniel, M.C., Quinkert, Z.T., De, M., Stein, B., Bowman, V.D., Chipman, P.R., Rotello, V.M., Kao, C.C. and Dragnea, B. 2006. Nanoparticle-templated assembly of viral protein cages. Nano letters 6: 611-615.

10. Douglas, T. and Young, M. 1998. Host-guest encapsulation of materials by assembled virus protein cages. Nature 393:152-155.

11. Douglas, T., Strable, E., Willits, D., Aitouchen, A., Libera, M. and Young, M. 2002. Protein engineering of a viral cage for constrained nanomaterials synthesis. Advanced materials 14:415-418.

12. Douglas, T., and Young, M. 2006. Viruses: Marking Friends with old foes. Science 312:573-875.

13. Dragnea, B., Chen, C., Kwak, E.S., Stein, B. and Kao, C.C. 2003. Gold nanoparticles as spectroscopic enhancers for in vitro studies on single viruses. J. Am. Chem. Soc. 125:6374-6375.

14. Dreher, T.W., Tsai, C.H. and Skuzeski, J.M. 1996. Aminoacylation identity switch of turnip yellow mosaic virus RNA from valine to methionine results in an infectious virus. Proc. Natl Acad. Sci.93:12212-12216.

15. Dreher, T.W. 2004. Turnip yellow mosaic virus: transfer RNA mimicry, chloroplasts and a C-rich genome. Molecular plant pathology 5:367-375.

16. Finch, J.T. and Klug, A. 1966. Arrangement of protein subunits and the distribution of nucleic acid in turnip yellow mosaic virus: electron microscopic studies. J. Mol. Biol.15:344-364.

17. Flenniken, M.L., Willits, D.A., Harmsen, A.L., Liepold, L.O., Harmsen, A.G., Young, M.J. and Douglas, T. 2006. Melanoma and lymphocyte cell-specific targeting incorporated into a heat shock protein cage architecture. Chem Biol 13:161-70.

18. Lane, L. 1986. Propagation and purification of RNA plant virus. Methods Emzymol 118:687-696.

19. Leimkuhler, M., Goldbeck, A., Lechner, M.D., Adrian, M., Michels, B. and Witz, J. 2001. The formation of empty shells upon pressure induced decapsidation of turnip yellow mosaic virus. Archives of virology 146:653-667.

20. Liu, W.L., Alim, K. and Balandin, A.A. 2005. Assembly and characterization of hybrid virus-inorganic nanotubes. Appl. Phys. Lett. 86:253108-253108-3.

21. Ho, Y.P., Kung, M.C., Yang, S. and Wang, T.H. 2005. Multiplexed hybridization detection with multicolor colocalization of quantum dot nanoprobes. Nano Letters 5:1693-1697.

22. Markham, R. and Smith, K.M. 1946. A new crystalline plant virus. Nature 157:300.

23. Matthews, R.E. F. 1991. Plant Virology, 3rd edn. San Diego:Academic press, lnc.

24. Mellema, J.R., Benicourt, C., Haenni, A.L., Noort, A., Pleij, C.W. and Bosch, L. 1979. Translational studies with turnip yellow mosaic virus isolated from major and minor virus particles. Virology 96:38-46.

25. Morch, M.D., Boyer, J.C. and Haenni, A.L. 1988. Overlapping open reasing frames revealed by complete nucleotide sequencing of turnip yellow mosaic virus genomic RNA. Nucleic Acids Res 16:6157-6173.

26. Sapsford, K.E., Soto, C.M., Blum, A.S., Chatterji, A., Lin, T., Johnson, J.E., Ligler, F.S. and Ratna, B.R. 2006. A cowpea mosaic virus nanoscaffold for multiplexed antibody conjugation: application as an immunoassay tracer. Biosensor and Bioelectronics 8:1668-1673.

27. Speir, J.A., Munshi, S., Wang, G., Baker, T.S. and Johnson, J.E. 1995. Structures of the native and swollen forms of cowpea chlorotic mottle virus determined by X-ray crystallography and cryo-electron microscopy. Structure 15:63-78.
28. Storhoff, J.J., Lucas, A.D., Garimella, V., Bao, Y.P. and Muller, U.R. 2004. Homogeneous detection of unamplified genomic DNA sequence based on colorimetric scatter of gold nanoparticle probes. Nature biotechnology 22:883-887.

29. Wang, Q., Lin, T., Johnson, J.E. and Finn, M.G. 2002. Natural supramolecular building blocks: cysteine-added mutants of cowpea mosaic virus. Chemistry and Biology 9:813-819.

30. Wang, Q., Kaltgrad, E., Lin, T., Johnson, J.E. and Finn, M.G. 2002 Natural supramolecular building blocks: wild-type cowpea mosaic virus. Chemistry and Biology 9:805-811.

31. Weiland, J.J. and Dreher, T.W. 1989. Infectious TYMV RNA from cloned cDNA: effects in vitro and in vivo of point substitutions in the initiation codons of two extensively overlapping ORFs. Nucleic Acids Res.17:4675-4687.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top