跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.152) 您好!臺灣時間:2025/11/02 06:17
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:許建民
研究生(外文):Chien-Min Hsu
論文名稱:以計算化學預測矽甲烷/鍺甲烷-鍺化矽化學氣相沉積系統中主要的氣相反應途徑及動力
論文名稱(外文):Computational Chemistry Predictions of Major Reaction Pathways and Kinetics in SiH4/GeH4—Si1-xGex—CVD System
指導教授:洪儒生洪儒生引用關係
指導教授(外文):Lu-Sheng Hong
學位類別:碩士
校院名稱:國立臺灣科技大學
系所名稱:化學工程系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2003
畢業學年度:91
語文別:中文
論文頁數:132
中文關鍵詞:分子軌域理論過渡態理論矽甲烷鍺甲烷鍺化矽
外文關鍵詞:molecular orbital theorytransition state theorySiH4GeH4Si1-xGex
相關次數:
  • 被引用被引用:0
  • 點閱點閱:304
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文利用分子軌域理論計算方法預測矽甲烷/鍺甲烷反應系統合成鍺化矽薄膜程序的主要氣相反應途徑,並配合過渡態理論與量子穿隧理論修正,來求得反應速率常數。結果發現鍺甲烷脫去一個氫分子生成GeH2自由基的反應為系統中起始反應的主要途徑,反應活化能Ea為55 kcal/mol,且在反應溫度873 K下鍺甲烷的分解反應速率為0.8 s-1較矽甲烷快約100倍左右。即使如此,因為SiH2具有較高的插入反應速率並生成一系列SinGeH2(n+1)+2中間產物,其可能為實驗中薄膜的鍺矽含量比隨著反應滯留時間增加而降低的主要原因。

The major gas-phase reaction pathways in the SiH4/GeH4—Si1-xGex— CVD reaction system has been investigated by molecular orbital theory calculations, together with a kinetic evaluation by transition state theory. The results indicate that primary pathway in the beginning is the decomposition of GeH4 to form GeH2 and H2 with an activation energy of 55 kcal/mol and a decomposition rate of 0.8 s-1 at 873 K, 100 times that of SiH4. Nevertheless, SiH2, an intermediate from SiH4, plays an important role in the subsequent reactions because of its much higher insertion reaction rates to form a series of intermediate SinGeH2(n+1)+2, which may be responsible for the experimental decrease of Ge/Si molar ratio in the films with increasing reaction resident time.

中文摘要 --------------------------------------------------------------------------I
中文摘要 -------------------------------------------------------------------------II
致謝 ------------------------------------------------------------------------------III目錄 ----------------------------------------------------------------------------- IV圖索引 --------------------------------------------------------------------------VII
表索引 ---------------------------------------------------------------------------IX
第一章 緒論 --------------------------------------------------------------------1
第二章 理論計算方法 -------------------------------------------------------17
2.1 量子力學基本概念 ------------------------------------------------17
2.2 Born-Oppenheimer approximation --------------------------------20
2.3 分子軌域理論 ------------------------------------------------------22
2.4 變數定理 ------------------------------------------------------------23
2.5 Hartree-Fock方程式 -----------------------------------------------26
2.6密度泛函理論 -------------------------------------------------------30
2.7 原子基底函數 ------------------------------------------------------36
2.8 過渡態 ---------------------------------------------------------------42
2.8-1 反應速率常數--------------------------------------------------42
2.8-2 量子穿隧效應對反應速率常數的影響--------------------46
2.9 計算方法 ------------------------------------------------------------47
第三章 結果與討論 ----------------------------------------------------------49
3.1 SiH4單獨反應可能的氣相反應途徑-----------------------50
3.2 GeH4單獨反應可能的氣相反應途徑----------------------55
3.3 SiH4/GeH4混合系統下可能的氣相反應途徑------------60
3.4 動力學探討:反應速率常數---------------------------------75
3.4-1 量子穿隧效應對反應速率常數的影響--------------76
3.4-2 SiH4/GeH4混合系統中SiH4及GeH4的脫氫反應速率常數探討--------------------------------------------------------79
3.4-3 SiH4/GeH4混合系統下SiH2、GeH2與其他反應物的反應速率常數探討--------------------------------------------81
3.4-4 由理論計算結果推測SiH4/GeH4混合系統中主要的氣相反應途徑---------------------------------------84
第四章 結論 --------------------------------------------------------------------88
第五章 參考文獻 --------------------------------------------------------------90
附錄一 --------------------------------------------------------------------------95
作者簡介 -----------------------------------------------------------------------132

1. 阮宏緒, 永昌第三季季刊, (2000)
2. B. S. Meyerson,“High speed silicon-germanium electronics”,Scientific American, 270, 42 (1994)
3. J. C. Bean,“Silicon-Based Semiconductor Heterostructure Column-IV Bandgap Engineering”,Proc. IEEE, 80, 571 (1992)
4. G. Masini, L. Colace, G. Assanto, H. C. Luan, L. C. Kimerling, IEEE Trans. Electron Devices, 48, 1092 (2001)
5. D. L. Harame, D. C. Ahlgren, D. D. Coolbaugh, J. S. Dunn, G. G. Freeman, J. D. Gillis, R. A. Groves, G. N. Hendersen, R. A. Johnson, A. J. Joseph, S. Subbanna, A. M. Victor, K. M. Watson, C. S. Webster, P. J. Zampardi, IEEE Trans. Electron Devices, 48, 2575 (2001)
6. S. J. Jeng, B. Jagannathan, J. S. Rieh, J. Johnson, K. T. Schonenberg, D. Greenberg, A. Stricker, H. Chen, M. Khater, D. Ahlgren, G. Freeman, K. Stein, S. Subbanna, IEEE Electron Device Letters, 22, 449 (2001)
7. J. S. Hamel, Y. T. Tang, K. Osman, IEEE Trans. Electron Devices, 49, 449 (2002)
8. J. Konle, H. Presting, H. Kibbel, K. Thonke, R. Sauer, Solid-State Electronics, 45, 1921 (2001)
9. S. G. Badcock, A. G. O’Neill, E. G. Chester, Solid-State Electronics, 46, 1925 (2002)
10. C. Li, Q. Yang, H. Wang, B. Cheng, J. Yu, Q. Wang, Optical Materials, 14, 267 (2000)
11. K. Nakajima, N. Usami, K. Fujiwara, Y. Murakami, T. Ujihara, G. Sazaki, T. Shishido, Solar Energy Materials & Solar Cells., 73, 305 (2002)
12. S. Zaima, Y. Yasuda, J. Vac. Sci. Technol, B16, 2623 (1998)
13. N. Pinto, R. Murri, C. Pasquali, Materials Science and Engineering, B89, 234 (2002)
14. K. Werner, A. Storm, S. Butzke, J. W. Maes, M. van Rooy, P. Alkemade, E. Algra, M. Somers, B. de Lange, E. van der Drift, T. Zijlstra, S. Radelaar, Journal of Crystal Growth, 164, 223 (1996)
15. F. Gao, D. D. Huang, J. P. Li, Y. X. Lin, M. Y. Kong, J. M. Li, Y. P. Zeng, L. Y. Lin, Journal of Crystal Growth, 220, 457 (2000)
16. J. M. Hartmann, B. Gallas, R. Ferguson, J. Ferandez, J. Chang, J. J. Harris, Semicond. Sci. Technol., 15, 362 (2000)
17. E. V. Thomsen, C. Christensen, C. R. Anderden, E. V. Pedersen, P. N. Egginton, O. Hansen, J. W. Petersen, Thin Solid Films, 294, 72 (1997)
18. T. Nakahata, K. Sugihara, T. Furukawa, S. Yamakawa, S. Maruno, Y. Tokuda, K. Yamamoto, T. Inagaki, H. Kiyama, Materials Science and Engineering, B68, 171 (2000)
19. S. Gu, Y. Zheng, R. Zhang, R. Wang, P. Zhong, J. Appl. Phys. 75, 5382 (1994)
20. S. Gu, Y. Zheng, R. Zhang, R. Wang, Physica B, 229, 74 (1996)
21. P. Ribot, S. Monfray, T. Skotnicki, D. Dutartre, Materials Science and Engineering, B89, 125 (2002)
22. T. I. Kamins, D. J. Meyer, Appl. Phys. Lett., 61, 90 (1992)
23. J. L. Shi, L. K. Nanver, K. Grimm, C. C. G. Visser, Thin Solid Films, 364, 254 (2000)
24. B. S. Meyerson, Appl. Phys. Lett., 48, 797 (1986)
25. J. Holleman, A. E. T. Kuiper, J. F. Verweij, J. Electrochem. Soc., 140 1717 (1993)
26. J. C. Sturm, P. V. Schwartz, E. J. Prinz, H. Manohara, J. Vac. Sci. Technol., B9, 2011 (1991)
27. B. S. Meyerson, Proc. IEEE, 80, 1592 (1992)
28. K. H. Jung, T. Y. Hsieh, D. L. Kwong, H. Y. Liu, R. Brennan, Appl. Phys. Lett., 60, 724 (1992)
29. 林超彥, “矽甲烷/鍺甲烷-鍺化矽-化學氣相沉積反應系統中氣相反應的角色”, 台灣科技大學化工所, 碩士論文 (2001)
30. L. S. Hong, T. Y. Shimogaki, Y. Egashira, H. Komiyama, J. Electrochem. Soc., 139, 3652 (1992)
31. Y. Egashira, T. Saito, S. Shiga, K. Ikuta, H. Komiyama, ibid., 1, C2-55 (1991)
32. W. J. Hehre, L. Radom, P. v. R., Pople, J. a., “ab initio Molecular Orbital Theory”, John Wiley & Sons, New York (1986)
33. M. D. Allendorf, C. F. Melius, J. Phys. Chem., 96, 428 (1992)
34. M. D. Su, H. B. Schlegel, ibid., 97, 9981 (1993)
35. H. Simka, M. Hierlemann, M. Utz, K. F. Jensen, J. Electrochem. Soc., 143, 2646 (1996)
36. P. Ho, M. E. Coltrin, J. S. Binkley, C. F. Melius, J. Phys. Chem., 90, 3399 (1986)
37. C. J. Cramer, “Essentials of Computational Chemistry — Theories and Models”, John Wiley & Sons, New York (2002)
38. R. P. Bell, “The Tunnel Effect in Chemistry”, Chapman and Hall, London and New York
39. A. Szabo, and N. S. Ostlund, Moden Quantum Chemistry, Introduction to Advanced Electronic Structure Theory, first edition (1993)
40. J. B. Foresman, A. Frisch, Exploring Chemistry with Electronic Structure Methods, second edition (1993)
41. Quantum Chemistry, An Overview of Density Functional
Theory (1995)
42. M. H. Gordon, J. Phys.Chem., 100, 13213 (1996)
43. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria,
M. A. Robb, J. R. Cheeseman, V. G. Zakrzewski, J. A. Montgomery, Jr., R. E. Stratmann, J. C. Burant, S. Dapprich, J. M. Millam,
A. D. Daniels, K. N. Kudin, M. C. Strain, O. Farkas, J. Tomasi,
V. Barone, M. Cossi, R. Cammi, B. Mennucci, C. Pomelli, C. Adamo,
S. Clifford, J. Ochterski, G. A. Petersson, P. Y. Ayala, Q. Cui,
K. Morokuma, P. Salvador, J. J. Dannenberg, D. K. Malick,
A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. Cioslowski,
J. V. Ortiz, A. G. Baboul, B. B. Stefanov, G. Liu, A. Liashenko,
P. Piskorz, I. Komaromi, R. Gomperts, R. L. Martin, D. J. Fox,
T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, J. L. Andres, C. Gonzalez, M. Head-Gordon, E. S. Replogle, and J. A. Pople, Gaussian, Inc., Pittsburgh PA, 2001.
44. S. S. Xantheas, J. Chem. Phys. 102, 4505 (1995)
45. G. E. Scuseria, H. F. Schaefer, III, ibid., 90, 3700 (1989)
46. P. Ho, M. E. Coltrin, W. G. Breiland, J. Phys. Chem., 98, 10138 (1994)
47. M. A. Ring, H. E. O’Neal, ibid., 96, 10848 (1992)
48. R. Becerra, R. Walsh, ibid., 96, 10856 (1992)
49. R. Walsh, Acc. Chem. Res. 14, 246 (1981)
50. J. Berkowitz, J. P. Greene, H. Cho, B. Rusics, J. Chem. Phys. 86, 1235 (1987)
51. R. J. Buss, P. Ho, W. G. Breiland, M. E. Coltrin, J. Appl. Phys. 63, 2808 (1988)
52. H. K. Moffat, K. F. Jensen, R. W. Carr, J. Phys. Chem. Phys. 96, 7695 (1992)
53. J. M. Jasinski, R. Becerra, R. Walsh, Chem. Rev. 95, 1203 (1995)
54. J. Dzarnosli, S. F. Rickborn, H. E. O’Neal, M. A. Ring, Organometallics, 1, 1217 (1982)
55. R. Becerra, R. Walsh, J. Phys. Chem., 91, 5765 (1987)
56. P. Nachtigall, K. D. Jordan, A. Smith, H. Jonsson, J. Chem. Phys. 104, 148 (1996)
57. K. Tonokura, T. Murasaki, M. Koshi, Chem. Phys. Letter, 319, 507 (2000)
58. B. Russcic, M. Schwarz, J. Berkowitz, J. Chem. Phys. 92, 1865 (1990)
59. S. D. Chambreau, J. Zhang, Chem. Phys. Letter, 351, 171 (2002)
60. C. G. Newman, J. S. Zhang, J. C. Traeger, T. H. Morton, Int. J. Chem. Kin. XII, 661 (1980)

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top