跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.213) 您好!臺灣時間:2025/11/12 11:39
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:紀毓周
研究生(外文):Chi, Yu-Chou
論文名稱:乙醇和四甲基吡唑抑制人類醇脫氫酶族氧化甲醇、 乙二醇及異丙醇的動力學機制
論文名稱(外文):Oxidation of methanol, ethylene glycol, and isopropanol with human alcohol dehydrogenases and the inhibition by ethanol and 4-methylpyrazole
指導教授:尹士俊
指導教授(外文):Yin, Shih-Jiun
口試委員:張久瑗王正康
口試委員(外文):Chen, Jeou-YuanWang, Jehng-Kang
口試日期:2011/06/17
學位類別:碩士
校院名稱:國防醫學院
系所名稱:生物化學研究所
學門:生命科學學門
學類:生物化學學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:53
中文關鍵詞:人類醇脫氫酶
外文關鍵詞:alcohol dehydrogenase
相關次數:
  • 被引用被引用:0
  • 點閱點閱:373
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
人類醇脫氫酶(alcohol dehydrogenase;ADH)為複雜的酶族,有多個同功酶(isozyme)兼具有多種基質專一性。各種不同的一級和二級脂肪醇代謝中,ADH是其限速步驟。甲醇 (methanol)、乙二醇 (ethylene glycol)及異丙醇 (isopropanol)為臨床急診醫學最常遇到的三種工業毒醇,但與人類ADH酶族氧化代謝的關係所知甚少。當人誤食中毒時,在臨床所作急救處理,常以乙醇靜脈灌注或注射四甲基吡唑(4-methylpyrazole;4MP)合併血液透析來解毒。本研究探討人ADH族的乙醇和四甲基吡唑與工業常見毒醇包括甲醇、異丙醇、乙二醇的動力學交互作用。人類重組第一類ADH1A、ADH1B1、ADH1B2、ADH1B3、ADH1C1和ADH1C2與第二類ADH2及第四類ADH4對乙醇氧化的恆態動力學,與四甲基吡唑對重組ADH的抑制動力學機制,實驗在0.1 M NaPi(pH 7.5,25°C)含0.5 mM NAD+ (模擬肝細胞液輔酶濃度)的緩衝液中測定。 (1) ADH族中ADH1B1對甲醇氧化的Km為2.0 mM,其餘成員對甲醇氧化具較高Km (180–3500 mM);Vmax範圍為0.025–0.41 U/mg。(2) ADH族中ADH1B1對乙二醇氧化的Km為4.3 mM,其餘成員對乙二醇氧化具較高Km (49–2600 mM);Vmax為0.074–3.1 U/mg。(3) ADH族中ADH1A、ADH1B1、ADH1C1及ADH1C2對異丙醇氧化的Km分別為0.73、1.1、5.3及6.7 mM,其餘成員對異丙醇氧化具較高Km (160–3400 mM);Vmax為0.045–3.7 U/mg。其中ADH2及ADH4對甲醇的氧化不具活性,而ADH1B3對乙二醇氧化亦不具活性。(4) 四甲基吡唑抑制ADH族乙醇氧化之酶動力學機制:四甲基吡唑抑制ADH1A、ADH1B1、ADH1B2、ADH1C1及ADH1C2氧化乙醇為競爭型;抑制ADH1B3、ADH2及ADH4氧化乙醇為非競爭型;斜率抑制常數(slope inhibition constants) Kis範圍在0.062–960 μM,截距抑制常數(intercept inhibition constants) Kii則在33–3000 μM。利用電腦模擬,將以上實驗測定之動力學參數帶入抑制方程式計算,預測毒醇在50 mM的高濃度情況,利用20 mM乙醇或是50 μM 四甲基吡唑皆可有效抑制毒醇的氧化。本研究結果從藥物遺傳學的觀點,為臨床使用四甲基吡唑或乙醇治療甲醇和乙二醇中毒患者,提供酶動力學的理論基礎依據。
Human alcohol dehydrogenases (ADHs) include multiple isozymes with broad substrate specificity and ethnic distinct allozymes. ADH catalyzes the rate-limiting step in metabolism of various primary and secondary aliphatic alcohols. The oxidation of common toxic alcohols, that is, methanol, ethylene glycol, and isopropanol by the human ADHs remains poorly understood. Kinetic studies were performed in 0.1 M sodium phosphate buffer, at pH 7.5 and 25◦C, containing 0.5 mM NAD+ and varied concentrations of substrate. Km values for ethanol with recombinant human class I ADH1A, ADH1B1, ADH1B2, ADH1B3, ADH1C1, and ADH1C2, and class II ADH2 and class IV ADH4 were determined to be in the range of 0.12–57 mM, for methanol to be 2.0–3500 mM, for ethylene glycol to be 4.3–2600 mM, and for isopropanol to be 0.73–3400 mM. ADH1B3 appeared to be inactive toward ethylene glycol, and ADH2 and ADH4, inactive with methanol. The variations for Vmax for the toxic alcohols were much less than that of the Km across the ADH family. 4-Methylpyrazole (4MP) was a competitive inhibitor with respect to ethanol for ADH1A, ADH1B1, ADH1B2, ADH1C1 and ADH1C2, and a noncompetitive inhibitor for ADH1B3, ADH2 and ADH4, with the slope inhibition constants (Kis) for the whole family being 0.062–960 μM and the intercept inhibition constants (Kii), 33–3000 μM. Computer simulation studies using inhibition equations in the presence of alternate substrate ethanol and of dead-end inhibitor 4MP with the determined corresponding kinetic parameters for ADH family, indicate that the oxidation of the toxic alcohols up to 50 mM are largely inhibited by 20 mM ethanol or by 50 μM 4MP with some exceptions. The above findings provide an enzymological basis for clinical treatment of methanol and ethylene glycol poisoning by 4MP or ethanol with pharmacogenetic perspectives.
目錄 I
表目錄 III
圖目錄 IV
縮寫表 VI
中文摘要 VII
英文摘要 VIII
緒言 1
材料與方法 7
壹、實驗材料 7
一、化學藥品 7
二、主要儀器 8
三、載體與大腸桿菌宿主品系 8
貳、實驗方法 9
一、ADH活性之測定 9
二、人類重組醇脫氫酶族的誘導表現及純化 9
三、電泳 12
四、蛋白質濃度之測定 15
五、比活性之計算 15
六、醇脫氫酶動力學之分析 14
七、同時催化兩個不同基質之動力學分析 15
實驗結果 16
壹、醇脫氫酶族乙醇氧化之飽和動力學 16
貳、醇脫氫酶族毒性醇氧化之動力學 17
一、甲醇氧化之動力學分析 17
二、乙二醇氧化之動力學分析 17
三、異丙醇氧化之動力學分析 17
参、醇脫氫酶族乙醇氧化之死巷抑制實驗 18
一、人類重組第一類醇脫氫酶ADH1A 18
二、人類重組第一類醇脫氫酶ADH1B1 18
三、人類重組第一類醇脫氫酶ADH1B2 18
四、人類重組第一類醇脫氫酶ADH1B3 18
五、人類重組第一類醇脫氫酶ADH1C1 18
六、人類重組第一類醇脫氫酶ADH1C2 18
七、人類重組第二類醇脫氫酶ADH2 19
八、人類重組第四類醇脫氫酶ADH4 19
肆、模擬乙醇及四甲基吡唑抑制毒醇之氧化比率 19
一、乙醇抑制ADH酶族對毒醇氧化抑制率之模擬 19
二、四甲基吡唑抑制ADH酶族對乙醇及毒醇氧化抑制率之模擬 19
討論 21
壹、人類醇脫氫酶族之乙醇與毒性醇之交互作用 21
貳、臨床上毒醇中毒與治療之應用 22
結論 23
參考文獻 24









表目錄
頁碼
表一 人類 ADH 族之生物及結構特性 28
表二 人類 ADH 族基質及輔酶結合部位之重要胺基酸 29
表三 人類不同族群ADH對偶基因之分佈頻數 30
表四 重組人類ADH族對乙醇氧化之動力學常數 31
表五 重組人類ADH族對甲醇氧化之動力學常數 32
表六 重組人類ADH族對乙二醇氧化之動力學常數 33
表七 重組人類ADH族對異丙醇氧化之動力學常數 34
表八 重組人類ADH族對乙醇及毒性醇Vmax (U/mg) 之比較 35
表九 重組人類ADH族對乙醇及毒性醇Vmax/KM (mU/(mg mM))之比較 36
表十 4-methylpyrazole對重組人類ADH族催化乙醇氧化之抑制型和抑制常數 37
表十一 計算機量化模擬4-methylpyrazole抑制ADH族之乙醇氧化 38




圖目錄
頁碼
圖一 人類ADH族重組蛋白之純化流程 39
圖二 人類重組蛋白ADH1A催化甲醇、乙二醇、異丙醇及乙醇之氧化飽和曲線圖 40
圖三 人類重組蛋白ADH1B1、ADH1B2與ADH1B3催化甲醇、乙二醇、異丙醇及乙醇之氧化飽和曲線圖 41
圖四 人類重組蛋白ADH1C1與ADH1C2催化甲醇、乙二醇、異丙醇及乙醇之氧化飽和曲線圖 42
圖五 人類重組蛋白ADH2與ADH4催化甲醇、乙二醇、異丙醇及乙醇之氧化飽和曲線圖 42
圖六 人類重組蛋白ADH1A乙醇氧化之4-methylpyrazole死巷抑制. 44
圖七 人類重組蛋白ADH1B1、ADH1B2與ADH1B3乙醇氧化之4-methylpyrazole死巷抑制 45
圖八 人類重組蛋白ADH1C1與ADH1C2乙醇氧化之4-methylpyrazole死巷抑制. 46
圖九 人類重組蛋白ADH2與ADH4乙醇氧化之4-methylpyrazole死巷抑制. 47

圖十 量化模擬細胞內ADH1A重組蛋白之乙醇與4-methylpyrazole交互作用. 48
圖十一 量化模擬ADH1B1、ADH1B2與ADH1B3重組蛋白之乙醇與4-methylpyrazole交互作用 49
圖十二 量化模擬ADH1C1與ADH1C2重組蛋白之乙醇與4-methylpyrazole交互作用. 50
圖十三 量化模擬ADH2與ADH4重組蛋白之乙醇與4-methylpyrazole交互作用. 51
圖十四 量化模擬人類ADH重組蛋白之乙醇對methanol、ethylene glycol以及isopropanol氧化抑制百分比. 52
圖十五 量化模擬人類ADH重組蛋白之4-methylpyrazole對 ethanol、methanol、ethylene glycol以及isopropanol氧化抑制百分比. 53



Abramson, S. and A. K. Singh (2000). "Treatment of the alcohol intoxications: ethylene glycol, methanol and isopropanol." Curr Opin Nephrol Hypertens 9(6): 695–701.
Adolph, H.W., Zwart, P., Meijers, R., Hubatsch, I., Kiefer, M., Lamzin, V. and Cedergren-Zeppezauer, E. (2000). Structural basis for substrate specificity differences of horse liver alcohol dehydrogenase isozymes. Biochemistry 39, 12885–12897.
Baraona, E., Yokoyama, A., Ishii, H., Hernandez-Munoz, R., Takagi, T., Tsuchiya, M. and Lieber, C. S. (1991) Lack of alcohol dehydrogenase isoenzyme activities in the stomach of Japanese subjects. Life Sci. 49, 1929–1934.
Bosron, W.F., Ehrig, T. and Li, T.K. (1993) Genetic factors in alcohol metabolism and alcoholism. Semin. Liver Dis. 13, 126–135.
Brändén, C.I., Jörnvall, H., Eklund, H. and Furugren, B. (1975) Alcohlol dehydrogenases. in: The Enzymes, Vol.11 edited by Boyer, P. D., New York, Academic, pp. 104-190.
Brent, J., McMartin, K., Phillips, S., Burkhart, K.K., Donovan, J.W., Wells, M. and Kulig, K. (1999) Fomepizole for the treatment of ethylene glycol poisoning. New Engl. J. Med. 340,832–838.
Burnell, J.C., Carr, L.G., Dwulet, F E., Edenberg, H.J., Li, T.K. and Bosron, W.F. (1987) The human β3 alcohol dehydrogenase subunit differs from β1 by a CYS for ARG-369 substitution which decreases NAD+(H) binding. Biochem. Biophys. Res. Commun. 146, 1227–1233.
Burnell, J.C. and Bosron, W.F. (1989) Genetic polymorphism of human liver alcohol dehydrogenase and kinetic properties of the isoenzymes. in: Human metabolism of alcohol, Vol. 2 edited by Crow, K.E., Batt, R.D. and Boca Raton, F.L., CRC, pp. 65–75.
Chen, C.S. and Yoshida, A. (1991) Enzymatic properties of the protein encoded by newly cloned human alcohol dehydrogenase ADH6 gene. Biochem. Biophys. Res. Commun. 181, 743–747.
Cleland, W.W. (1979) Statistical analysis of enzyme kinetic data. Meth. Enzymol. 63, 103–138
Deltour, L., Foglio, M.H. and Duester, G. (1999) Metabolic deficiencies in alcohol dehydrogenase Adh1, Adh3, and Adh4 null mutant mice. Overlapping roles of Adh1 and Adh4 in ethanol clearance and metabolism of retinol to retinoic acid. J. Biol. Chem. 274, 16796–16801.
Dixon, M. and Webb, E. C. (1979) Enzymes, 3rd edn. New York, Academic.
Dong, Y.J., Peng, T.K. and Yin, S.J. (1996) Expression and activities of class IV alcohol dehydrogenase and class III aldehyde dehydrogenase in human mouth. Alcohol 13, 257-262.
Duester, G., Farrés, J., Felder, M.R., Holmes, R.S., Höög, J.O., Parés, X., Plapp, B.V., Yin, S.J. and Jörnvall, H. (1999) Recommended nomenclature for the vertebrate alcohol dehydrogenase gene family. Biochem. Pharmacol. 58, 389–395.
Eklund, H., Nordstrom, B., Zeppezauer, E., Soderlund, G., Ohlsson, I., Boiwe, T., Soderberg, B.O., Tapia, O., Brändén, C.I. and Akeson, A. (1976) Three–dimensional structure of horse liver alcohol dehydrogenase at 2.4 Å resolution. J. Mol. Biol. 102, 27–59.
Eklund, H., Muller-Wille, P., Horjales, E., Futer, O., Holmquist, B., Vallee, B. L., Höög, J.O., Kaiser, R. and Jörnvall, H. (1990) Comparison of three classes of human liver alcohol dehydrogenase: emphasis on different substrate binding pockets. Eur. J. Biochem. 193, 303–310.
Engeland, K. and Maret, W. (1993) Extra hepatic differential expression of four classes of human alcohol dehydrogenase. Biochem. Biophys. Res. Commun. 193, 47–53.
Estonius, M., Svensson, S. and Höög, J.O. (1996) Alcohol dehydrogenase in human tissues: localization of transcripts coding for five classes of the enzyme. FEBS Lett. 379, 338–342.
Fan, F. and Plapp, B.V. (1995) Substitutions of isoleucine residues at the adenine binding site activate horse liver alcohol dehydrogenase. Biochemistry 34, 4709–4713.
Farrés, J., Moreno, A., Crosas, B., Peralba, J. M., Allali-Hassani, A., Hjelmqvist, L., Jörnvall, H. and Parés, X. (1994) Alcohol dehydrogenase of class IV from human stomach cDNA sequence and structure/function relationships. Eur. J. Biochem. 224, 549–557.
Giri, P.R., Krug, J.F., Kozak, C., Moretti, T., O'Brien, S.J., Seuanez, H.N. and Glodman, D. (1989) Cloning and comparative mapping of a human class III alcohol dehydrogenase cDNA. Biochem. Biophys. Res. Commun. 164, 453–460.
Han, C.L., Liao, C.S., Wu, C.W., Hwong, C.L., Lee, A. R. and Yin, S.J. (1998) Contribution to first-pass metabolism of ethanol and inhibition by ethanol for retinol oxidation in human alcohol dehydrogenase family: implication for etiology of fetal alcohol syndrome and alcohol-related diseases. Eur. J. Biochem. 254, 25–31.
Höög, J.O., von Bahr-Lindstrom, H., Heden, L.O., Holmquist, B., Larsson, K., Hempel, J., Vallee, B.L. and Jörnvall, H. (1987) Structure of the class II enzyme of human liver alcohol dehydrogenase: combined cDNA and protein sequence determination of the  subunit. Biochemistry 26, 1926–1932.

Hoog, J. O., P. Stromberg, et al. (2003). "The mammalian alcohol dehydrogenases interact in several metabolic pathways." Chem Biol Interact 143-144: 175–181.
Hurley, T.D., Bosron, W.F., Hamilton, J.A. and Amzel, L.M. (1991) The structure of human β1β1 alcohol dehydrogenase: catalytic effects of non-active-site substitution. Proc. Natl. Acad. Sci. USA 88, 8149–8153.
Hurley, T.D., Bosron, W.F., Stone, C.L. and Amzel, L.M. (1994) Structures of three human  alcohol dehydrogenase variants correlations with their functional differences. J. Mol. Biol. 239, 415–429.
Jörnvall, H. and Höög, J.O. (1995) Nomenclature of alcohol dehydrogenases. Alcohol Alcohol. 30, 153-161.
Jornvall, H., J. O. Hoog, et al. (2000). "Pharmacogenetics of the alcohol dehydrogenase system." Pharmacology 61(3): 184-191.
Kaiser, R., Holmquist, B., Hempel, J., Vallee, B.L. and Jörnvall, H. (1988) Class III human liver alcohol dehydrogenase: a novel structural type equidistantly related to the class I and class II enzymes. Biochemistry 27, 1132–1140.
Kedishvili, N.Y., Bosron, W.F., Stone, C.L., Hurley, T.D., Peggs, C.F., Thomasson, H.R., Popov, K.M., Carr, L.G., Edenberg, H.J. and Li, T.K. (1995) Expression and kinetic characterization of recombinant human stomach alcohol dehydrogenase. Active-site amino acid sequence explains substrate specificity compared with liver isozymes. J. Biol. Chem. 270, 3625-3630.
Klinman, J.P. (1981) Probes of mechanism and transition-state structure in the alcohol dehydrogenase reaction. CRC Critical Reviews in Biochemistry 10, 39–78.
Kraut, J. A. and I. Kurtz (2008). "Toxic alcohol ingestions: clinical features, diagnosis, and management." Clin J Am Soc Nephrol 3(1): 208–225.
Lee, S.L., Wang, M.F., Lee, A.I. and Yin, S.J. (2003) The metabolic role of human ADH3 functioning as ethanol dehydrogenase. FEBS Lett. 544, 143–147.
Lee, S. L., G. Y. Chau, et al. (2006). "Functional assessment of human alcohol dehydrogenase family in ethanol metabolism: significance of first-pass metabolism." Alcohol Clin Exp Res 30(7): 1132–1142.
Lee, S. P., C. P. Chiang, et al. (2006). "Immunochemical features in the classification of human alcohol dehydrogenase family." Alcohol 39(1): 13–20.
Li, T.K. (1977) Enzymology of human alcohol metabolism. Adv. Enzymol. 45, 427–483.
Lieber, C.S. (1994) Alcohol and the liver : 1994 update. Gastroenterology 106, 1085–1105.
Liu, J.D., Leung, K.W., Wang, C.K., Liao, L.Y., Wang, C.S., Chen, P.H., Chen, C.C. and Yeh, E.K. (1998) Alcohol-related problems in Taiwan with particular emphasis on alcoholic liver diseases. Alcohol Clin. Exp. Res. 22, 164S–169S.
Liu, L., Hausladen, A., Zeng, M., Que, L., Heitman, J. and Stamler, J.S. (2001) A metabolic enzyme for S-nitrosothiol conserved from bacteria to humans. Nature 410, 490–4.
Lowry, O.H., Rosebrough, N.J., Farr, A.L. and Randall, R.J. (1951) Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193, 265–275.
Megarbane, B., S. W. Borron, et al. (2005). "Current recommendations for treatment of severe toxic alcohol poisonings." Intensive Care Med 31(2): 189–195.
Moreno, A. and Parés, X. (1991) Purification and characterization of a new alcohol dehydrogenase from human stomach. J. Biol. Chem. 266, 1128–1133.
Moulis, J.M., Holmquist, B. and Vallee, B.L.(1991) Hydrophobic anion activation of human liver χχ alcohol dehydrogenase. Biochemistry 30, 5743-5749.
Niederhut, M. S., B. J. Gibbons, et al. (2001). "Three-dimensional structures of the three human class I alcohol dehydrogenases." Protein Sci 10(4): 697–706.
Plapp, B.V. (1995) Site-directed mutagenesis: a tool for studying enzyme catalysis. Meth. Enzymol. 249, 91–119.
Smith, M., Hopkinson, D.A. and Harris, H. (1971) Developmental changes and polymorphism in human alcohol dehydrogenase. Ann. Hum. Genet. 34, 251–271.
Stone, C.L., Thomasson, H.R., Bosron, W.F. and Li, T.K. (1993) Purification and partial amino acid sequence of a high-activity human stomach alcohol dehydrogenase. Alcohol. Clin. Exp. Res. 17, 911–918.
Strömberg, P. and Höög, J.O. (2000) Human class V alcohol dehydrogenase (ADH5): A complex transcription unit generates C-terminal multiplicity. Biochem. Biophys. Res. Commun. 278, 544–549.
Vallee, B.L. and Bazzone, T.J. (1983) Isozymes of human liver alcohol dehydrogenase. Isozymes Curr. Top. Biol. Med. Res. 8, 219–244.
Wagner, F. W., X. Pares, et al. (1984). "Physical and enzymatic properties of a class III isozyme of human liver alcohol dehydrogenase: chi-ADH." Biochemistry 23(10): 2193-2199.
Xie, P., Parsons, S.H., Speckhard, D.C., Bosron, W.F. and Hurley, T.D. (1997) X-ray structure of human class IV alcohol dehydrogenase. Structural basis for substrate specificity. J. Biol. Chem. 272, 18558-18563.
Yasunami, M., Chen, C.S. and Yoshida, A. (1991) A human alcohol dehydrogenase gene (ADH6) encoding an additional class of isozyme. Proc. Natl. Acad. Sci. U.S.A. 88, 7610–7614.
Yeh, E.K. and Hwu, H.G. (1992) Alcoholism in Taiwan Chinese communities, in “Alcoholism in North America, Europe, and Asia,” J.E. Helzer and G..J. Canino, eds., Oxford University Press, Oxford, pp. 215–246.
Yin, S.J., Bosron, W.F., Li, T.K., Ohnishi, K., Okuda, K., Ishii, H. and Tsuchiya, M. (1984) Polymorphism of human liver alcohol dehydrogenase: Identification of ADH2 2-1 and ADH2 2-2 phenotypes in the Japanese by isoelectric focusing. Biochem. Genet. 22, 169-180.
Yin, S.J., Liao, C.S., Chen, C.M., Fan, F.T. and Lee, S.C. (1992) Genetic polymorphism and activities of human lung alcohol and aldehyde dehydrogenases: implications for ethanol metabolism and cytotoxicity. Biochem. Genet. 30, 203–15.
Yin, S.J., Chou, F.J., Chao, S.F., Tsai, S.F., Liao, C.S., Wang, S.L., Wu, C.W. and Lee, S.C. (1993) Alcohol and aldehyde dehydrogenases in human esophagus. Comparison with the stomach enzyme activities. Alcohol. Clin. Exp. Res. 17, 376–381.
Yin, S. J. (1994). "Alcohol dehydrogenase: enzymology and metabolism." Alcohol Alcohol Suppl 2: 113–119.
Yin, S.J., Wang, M.F, Han, C.L. and Wang, S.L. (1995) Substrate binding pocket structure of human aldehyde dehydrogenase: A substrate specificity approach. in: Enzymology and Molecular Biology of Carbonyl Metabolism 5. edited by Weiner H, Plenum Press, New York, pp. 9–16.
Yin, S.J. (1996) Alcohol dehydrogenase: enzymology and metabolism. in: The Biology of Alcohol Problems. edited by Saunders, J. B. and Whitfield, J. B., Oxford, Elsevier Science, pp. 113-119.
Yin, S.J., Han, C.L., Liao, C.S. and Wu, C.W. (1997a) Expression, activities, and kinetic mechanism of human stomach alcohol dehydrogenase. Inference for first-pass metabolism of ethanol in mammals. Adv. Exp. Med. Biol. 414, 347–355.
Yin, S.J., Liao, C.S., Wu, C.W., Li, T.T., Chen, L.L., Lai, C.L. and Tsao, T.Y. (1997b) Human stomach alcohol and aldehyde dehydrogenases: Comparison of expression pattern and activities in alimentary tract. Gastroenterology 112, 766-775.
Yin, S.J., Han, C.L., Lee, A.I. and Wu, C.W. (1999) Human alcohol dehydrogenase family. Functional classification, ethanol/retinol metabolism, and medical implications. Adv. Exp. Med. Biol. 463, 265–274.
Yin, S. J., C. F. Chou, et al. (2003). "Human class IV alcohol dehydrogenase: kinetic mechanism, functional roles and medical relevance." Chem Biol Interact 143-144: 219–227.
Ylikahri, R. H., Leino, T., Huttunen, M. O., Poso, A. R., Eriksson, C. J. and Nikkila (1976) Effects of fructose and glucose on ethanol-induced metabolic changes and on the intensity of alcohol intoxication and hangover. Eur. J. Clin. Invest. 6, 93–102.
Yoshida, A., Hsu, L.C. and Yasunami, M. (1991) Genetics of human alcohol-metabolizing enzymes. Prog. Nucl. Acid Res. Mol. Biol. 40, 255-287.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文