跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.102) 您好!臺灣時間:2025/12/04 10:00
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:袁天民
研究生(外文):Tein-Ming Yuan
論文名稱:臨床表徵及免疫組織化學染色特徵在腸胃道基質肉瘤切除後復發預後的重要性
論文名稱(外文):The Prognostic Significance of Clinical Features and Immunohistochemical Characterization of the Recurrence in the Resected Advanced Gastrointestinal Stromal Tumors
指導教授:周寬基周寬基引用關係
學位類別:碩士
校院名稱:國立中興大學
系所名稱:生命科學院碩士在職專班
學門:生命科學學門
學類:生物學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:55
中文關鍵詞:腸胃道基質肉瘤c-kitPDGFR-αImatinib mesylateBcl-2
外文關鍵詞:Gastrointestinal stromal tumors(GISTs)C-kitPDGFR-αImatinib mesylateBcl-2
相關次數:
  • 被引用被引用:0
  • 點閱點閱:208
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
腸胃道基質肉瘤是在腸胃道最惡性的基質腫瘤。可觸摸腹部腫瘤及急性腹痛是腸胃道基質肉瘤最常見的臨床表現。大部份腸胃道基質肉瘤被偵測到是在胃部。這種腫瘤的大小以及腫瘤分裂的活動性是非常重要影響預後的兩個因子,並且據此將腫瘤加以風險分類。在早期治療腸胃道基質肉瘤時,化學治療和放射治療的反應都不佳,手術則是目前唯一可以治癒腸胃道基質肉瘤的方法。近期,標靶治療藥物-Imatinib在這種腸胃道基質肉瘤治療上得到好的反應。而大部份的腸胃道基質肉瘤都常會有產生基因突變,一般都在 c-kit基因和PDGFR-α基因突變,而這種突變也正是標靶治療藥物-Imatinib Mesylate攻擊的所在。無論如何在這些研究中,尚有許多因子還未出現臨床顯著性。因此我們分析這些臨床病理因子特徵,來評估它們在已切除的腸胃道基質肉瘤的復發及轉移所扮演角色。
從2001年八月至2006年的三月,收集31個具侵犯性的腸胃道基質肉瘤術後病理臘塊包埋組織,並且將這些組織做免疫化學染色(CD-117, SMA, CD-34, S-100, Desmin, Bcl-2, PDGFR-α)。這些腸胃道基質肉瘤病人包括在我們樣本中主要是依據腫瘤大小、分裂的活動性以及CD-117陽性反應。而侵犯性腸胃道基質肉瘤的定義則是將中度風險及高風險的病人包含在內。這次主要是去評估經過外科手術後的腸胃道基質肉瘤病患有那些會影響復發的因子。
結果顯示在中等風險及高風險腸胃道基質肉瘤病患的比較中:年紀、腫瘤復發、是可以達到統計學上差異性,中等風險病患比高風險病患要有更長復發期。而高風險病患明顯有不好的預後。另外在性別、切除的完整性和Bcl-2對於腫瘤術後復發及轉移性有顯著影響,而其他因子並無影響復發的顯著性。PDGFR-α的表現在這些高KIT(CD-117)表現度病理切片中有29%強,但是對於這些病患疾病惡化並無影響性。目前接受Imatinib治療的病患中,並沒有因疾病惡化而死亡的病例。
綜合論之;男性的病患、腫瘤切除完整性和Bcl-2都是可以預期腫瘤復發的因子。腸胃道基質肉瘤風險的分類不僅對疾病的惡化預測有幫助,同時也能有效於疾病的復發預測。
Gastrointestinal stromal tumors (GISTs) are the most malignant mesenchymal tumor in the gastrointestinal (GI) tract. Palpable abdominal mass and acute abdomen pain are the major common symptoms in the GISTs. Most of GISTs were detected in the stomach. The tumor size and mitosis counts are the most important factors to predict the prognosis and to define the risk categories. The GISTs are poor responder to chemotherapy and radiotherapy and the only cure method is surgical resection for the primary GISTs in time. Recently, a target therapy using imatinib had a promising reponse rate. However, in some GISTs mutation in constitutively activated C-kit gene mutation (CD 117) and platelet-derived growth factor receptor alpha (PDGFR-α), which are the major therapeutic target for imatinib mesylate (Gliveec), are frequently identified. However, the clinical significance of these factors in GIST is not well characterized in this study. We therefore analyzed the clinicopatholical factors to evaluate the role of these factors in the the recurrence and metastasis of the primary resected GIST.
Between August 2001 and March 2006, 31 advanced GIST patient’s paraffin embedded specimens were collected Immunohistochemical staining of CD-117, SMA, CD-34, S-100, Desmin, Bcl-2, PDGFR-α were performed in these specimens. Patients were classified on the basis of tumor size, the mitotic rate and CD117 positively. Advanced GISTs were defined as intermediate (I) and high risk (II) group. To evaluate what prognostic factors influences tumor recurrence and metastasis after resection of advanced gastrointestinal stromal tumors.
Results revealed that age (p=0.048) and tumor recurrence (p=0.036) had significant differences between (I) and (II) group. The intermediated risk group had longer disease free time than high risk group (27 months Vs 17.5 months). It is evidence that high risk group GISTs were belong to poor disease free survival (p=0.047). Between the tumor recurrence group and non-recurrence group, there were significant differences in sex (p=0.013), incomplete resection (p=0.035), and Bcl-2 (p=0.046). Otherwise, most factors ( including age, clinical signs and symptoms, tumor location, immunochemical stains and PDGFR-α) had no significant differences in the recurrence group. PDGFR-α expression (29%) also was noted in the CD 117 overexpression specimens and no significant influence in disease progression. No mortality case was found in the advanced GISTs treated with imatinib.
In conclusion, the results from this study that male, resection margin and Bcl-2 are predictive factors for GISTs tumor recurrence. Meanwhile, the GIST risk classification not only has the help to forecast the GIST progression also to be able effectively to forecast the GIST recurrence.
目次
誌謝....................................................I
目次....................................................II
中文摘要................................................V
英文摘要................................................VII
圖目錄..................................................IX
表目錄..................................................X
第一章 緒論.............................................1
第一節 背景資料........................................1
第二節 文獻討論........................................2
1.2.1 流行病學和臨床診斷...........................2
1.2.2 病理診斷.....................................3
1.2.3 風險分類.....................................4
1.2.4 GISTs致癌分子機制............................5
1.2.5 GISTs的處置與預後............................7
1.2.5.1 GISTs的手術處理..........................7
1.2.5.2 GISTs的標靶藥物處理......................8
第二章 研究動機.........................................10
第三章 實驗材料與方法...................................11
第一節 實驗樣本來源....................................11
第二節 實驗方法與步驟..................................12
2.1 組織免疫化學染色...............................12
2.2 蠟塊檢體抽取DNA................................13
2.2.1 PCR反應(聚合酶連鎖反應)....................13
2.2.2 Agrose clectrophoresis.....................13
2.2.3 DNA序列分析儀-核酸自動分析儀..............14
第三節 實驗統計方式....................................14
第四章 實驗結果與分析...................................15
第一節 高風險性(II)及中等風險程度(I)比較...............15
第二節 復發、轉移性GISTs(III)與未復發的GISTs(IV)的比較.17
第五章 討論.............................................19
第一節 臨床表徵與復發..................................19
第二節 免疫組織染色與復發..............................21
第三節 病理組織細胞型態與復發..........................22
第四節 c-kit基因與復發.................................22
第五節 GISTs復發後標靶藥物治療與追蹤...................23
第六章 結論.............................................25
參考文獻................................................48
附錄
圖-1 KIT接受體蛋白之結構.............................56
圖-2 Imainib結構式...................................57
圖-3 Bcl-2 protein在細胞凋亡(Apopfosis)所扮演抑制角色.........58
圖-4處理GISTs的流程圖................................59
表-1 GISTs病患的風險性分類...........................60
表-2 各種化學治療配方對GISTs的反應率.................61
表-3 c-kit和PDGFR-α的Primer序列......................62
1.Fletcher CD, Berman JJ, Corless C, Gorstein F, Lasota J, Longley BJ, Miettinen M, O''Leary TJ, Remotti H, Rubin BP, Shmookler B, Sobin LH, and Weiss SW (2002). Diagnosis of gastrointestinal stromal tumors: A consensus approach. Hum. Pathol. 33, 459-465.
2.Kindblom L.G., Remotti H.E., Aldenborg F. and Meis-Kindblom J.M. (1998). Gastrointestinal pacemaker cell tumor (GIPACT): Gastrointestinal stromal tumors show phenotypic characteristics of the interstitial cells of Cajal. Am. J. Pathol. 152, 1259-1269.
3.Sarlomo-Rikala M, Kovatich AJ, Barusevicius A, and Miettinen M. (1998). CD117: A sensitive marker for gastrointestinal stromal tumors that is more specific than CD34. Mod. Pathol. 11, 728-734.
4.Kindblom LG, Meis-Kindblom J, and Bumming P. (2003). Incidence, prevalence, phenotype, and biologic spectrum of gastrointestinal stromal tumors (GIST)—A population-based study of 600 cases. Ann Onco l13,157 (abstract).
5.Tzen CY, Wang JH, and Huang YJ. (2007). Incidence of Gastrointestinal Stromal Tumor:A Retrospective Study Based on Immunohistochemical and Mutational Analyses. Dig Dis Sci. 52,792-797.
6.Miettinen M, Monihan J.M, Sarlomo-Rikala M, Kovatich A.J, Carr N.J. Emory T.S. and Sobin L.H. (1999). Gastrointestinal stromal tumors/smooth muscle tumors (GISTs) primary in the omentum and mesentery: Clinicopathologic and immunohistochemical study of 26 cases. Am. J. Surg. Pathol. 23, 1109-1118.
7.Miettinen M, Sobin L.H. and Sarlomo-Rikala M. (2000). Immunohistochemical spectrum of GISTs at different sites and their differential diagnosis with a reference to CD117 (KIT). Mod. Pathol. 13, 1134-1142.
8.Jason S. Gold, and Ronald P. DeMatteo. (2006). Combined Surgical and Molecular Therapy:The Gastrointestinal Stromal Tumor Model Ann Surg 244, 176-184.
9.Miettinen M, Lasota J. (2001). Gastrointestinal stromal tumors— Definition, clinical, histological, immunohistochemical, and molecular genetic features and differential diagnosis. Virchows Archiv 438,1-12.
10.Corless CL, Fletcher JA, and Heinrich MC. (2004). Biology of gastrointestinal stromal tumors. J Clin Oncol 22,3813-3825.
11.Miettinen M, Sobin LH, and Lasota J. (2005). Gastrointestinal stromal tumors of the stomach: A clinicopathologic, immunohistochemical, and molecular genetic study of 1765 cases with long-term follow-up. Am J Surg Pathol 29,52-68.
12.Noguchi T, Sato T, Takeno S, Toshiyuki K, Takuo S, Akiko H, Katsuyuki K, Atsuhiko T, Katsuyuki H, Shigeki U, Kadoaki O, Yoshiro F, Saburo T, Eiki I, Masahiro O, Masahiro T, Mitsune T, and Kiyoshi T. (2002). Biological analysis of gastrointestinal stromal tumors. Oncol Rep 9, 1277-82.
13.Hirota S., Nishida T., Isozaki K., Taniguchi M., Nakamura J., Okazaki T. and Kitamura Y. (2001). Gain-of-function mutation at the extracellular domain of KIT in gastrointestinal stromal tumours. J. Pathol. 193, 505-510.
14.Besmer P, Murphy JE, George PC, Qiu FH, Bergold PJ, Lederman L, Snyder HW Jr, Brodeur D, Zuckerman EE, and Hardy WD. (1986). A new acute transforming feline retrovirus and relationship of its oncogene v-kit with the protein kinase gene family. Nature 320,415-419,
15.Yarden Y, Kuang WJ, Yang-Feng T, Coussens L, Munemitsu S, Dull TJ, Chen E, Schlessinger J, Francke U, and Ullrich A. (1987). Human proto-oncogene c-kit: A new cell surface receptor tyrosine kinase for an unidentified ligand. EMBO J 6,3341-3351,
16.Nocka K, Majumder S, Chabot B, , Ray P, Cervone M, Bernstein A, and Besmer P. (1989). Expression of c-kit gene products in known cellular targets of W mutations in normal and W mutant mice—Evidence for an impaired c-kit kinase in mutant mice. Genes Dev 3,816-826,
17.Hirota S., Isozaki K., Moriyama Y., Hashimoto K., Nishida T., Ishiguro S., Kawano K., Hanada M., Kurata A., Takeda M., Muhammad Tunio G., Matsuzawa Y., Kanakura Y., Shinomura Y. and Kitamura Y. (1998). Gain-of-function mutations of c-kit in human gastrointestinal stromal tumors. Science 279, 577-580.
18.Heinrich MC, Corless CL, and Demetri GD. (2003). Kinase mutations and imatinib response in patients with metastatic gastrointestinal stromal tumor. J Clin Oncol 21,4342-4349
19.Blume-Jensen P, Claesson-Welsh L, Siegbahn A, Zsebo K.M, Westermark B. and Heldin C.H. (1991). Activation of the human c-kit product by ligand-induced dimerization mediates circular actin reorganization and chemotaxis. EMBO J. 10, 4121-
20.Zhang Z, Zhang R, Joachimiak A, Schlessinger J. and Kong X.P. (2000). Crystal structure of human stem cell factor: Implication for stem cell factor receptor dimerization and activation. Proc. Natl. Acad. Sci. USA 97, 7732-7737.
21.Perry M. Chan, Subburaj Ilangumaran, Jose La Rose, Avijit Chakrabartty, and Robert Rottapel. (2003). Autoinhibition of the kit receptor tyrosine kinase by the cytosolic juxtamembrane region . Mol. Cell. Biol.; 23, 3067-3078
22.Nakahara M, Isozaki K, Hirota S, Miyagawa J, Hase-Sawada N, Taniguchi M, Nishida T, Kanayama S, Kitamura Y, Shinomura Y. and Matsuzawa Y. (1998). A novel gain-of function mutation of c-kit gene in gastrointestinal stromal tumors. Gastroenterology 115, 1090-1095.
23.Kozlowski M, Larose L, Lee F, Le D.M, Rottapel R and Siminovitch K.A. (1998). SHP-1 binds and negatively modulates the c-Kit receptor by interaction with tyrosine 569 in the c-Kit juxtamembrane domain. Mol. Cell. Biol. 18, 2089-2099.
24.Hirota S, Nishida T, Isozaki K, Taniguchi M, Nishikawa K, Ohashi A, Takabayashi A, Obayashi T, Okuno T, Kinoshita K, Chen H, Shinomura Y. and Kitamura Y. (2002). Familial gastrointestinal stromal tumors associated with dysphagia and novel type germline mutation of KIT gene. Gastroenterology 122, 1493-1499.
25.Lasota J, Wozniak A, and Sarlomo-Rikala M. (2000). Mutations in exons 9 and 13 of KIT gene are rare events in gastrointestinal stromal tumors: A study of 200 cases. Am J Pathol 157, 1091-1095.
26.Longley B.J, Reguera M.J. and Ma Y. (2001). Classes of c-KIT activating mutations: proposed mechanisms of action and implications for disease classification and therapy. Leuk. Res. 25, 571-576.
27.Ma Y., Zeng S, Metcalfe D.D, Akin C., Dimitrijevic S, Butterfield J.H, McMahon G. and Longley B.J. (2002). The c-kit mutation causing human mastocytosis is resistant to STI-571 and other KIT kinase inhibitors: Kinases with enzymatic site mutations show different inhibitor sensitivity profiles than wild-type kinases and those with regulatory-type mutations. Blood 99, 1741-1744.
28.Dematteo R.P, Heinrich M.C, El-Rifai W.M. and Demetri G. (2002). Clinical management of gastrointestinal stromal tumors: Before and after STI-571. Hum. Pathol. 33, 466-477.
29.Masahiko Taniguchi, Toshirou Nishida,2 Seiichi Hirota, Koji Isozaki, Toshinori Ito, Taisei Nomura, Hikaru Matsuda, and Yukihiko Kitamura. (1999). Effect of c-kit Mutation on Prognosis of Gastrointestinal Stromal Tumors. Can Res 59, 4297-4300.
30.Buchdunger E, Cioffi C.L, Law N, Stover D, Ohno-Jones S, Druker B.J. and Lydon N.B. (2000). Abl protein-tyrosine kinase inhibitor STI571 inhibits in vitro signal transduction mediated by c-kit and platelet-derived growth factor receptors. J. Pharmacol. Exp. Ther. 295, 139-145.
31.Savage D.G. and Antman K.H. (2002). Imatinib mesylate - a new oral targeted therapy. N. Engl. J. Med. 346, 683-693.
32.Heinrich M.C, Griffith D.J, Druker B.J, Wait C.L, Ott K.A, and Zigler A.J (2000). Inhibition of c-kit receptor tyrosine kinase activity by STI 571, a selective tyrosine kinase inhibitor. Blood 96,925-932.
33.Tuveson D.A, Willis N.A., Jacks T, Griffin J.D, Singer S, Fletcher C.D, Fletcher J.A. and Demetri G.D. (2001). STI571 inactivation of the gastrointestinal stromal tumor c-KIT oncoprotein: Biological and clinical implications. Oncogene 20, 5054-5058.
34.Joensuu H, Roberts P.J, Sarlomo-Rikala M, Andersson L.C, Tervahartiala P, Tuveson D, Silberman S, Capdeville R, Dimitrijevic S, Druker B. and Demetri G.D. (2001). Effect of the tyrosine kinase inhibitor STI571 in a patient with a metastatic gastrointestinal stromal tumor. N. Engl. J. Med. 344, 1052-1056.
35.Demetri GD, von Mehren M, and Blanke CD. (2002). Efficacy and safety of imatinib mesylate in advanced gastrointestinal stromal tumors. N Engl J Med 347,472-480.
36.Langer C, Gunawan B, and Schuler P. (2003). Prognostic factors influencing surgical management and outcome of gastrointestinal stromal tumours. Br J Surg. 90,332-339.
37.Lin SC, Liu CL, Wang T-I, Chang WS, Tzen CY, and Huang MJ. (2006). Clinical implications of C-kit gene mutation in patients with large gastrointestinal stromal tumors Journal of Gastroenterology and Hepatology 21,1604-1608
38.Emory TS, Sobin LH, and Lukes L. (1999). Prognosis of gastrointestinal smooth-muscle (stromal) tumors: dependence on anatomic site. Am J Surg Pathol. 23,82- 87.
39.DeMatteo RP, Lewis JJ, and Leung D. (2000). Two hundred gastrointestinal stromal tumors: recurrence patterns and prognostic factors for survival. Ann Surg. 231,51-58.
40.Lucian R. Chirieac, Jonathan C. Trent, Dejka M. Steinert, Haesun Choi, Ying Yang, Jiexin Zhang, Shreyaskumar R. Patel, Robert S. Benjamin, and A. Kevin Raymond, (2006). Correlation of Immunophenotype With Progression-FreeSurvival in Patients With Gastrointestinal Stromal Tumors Treated With Imatinib Mesylate Cancer.107,2237-2244
41.Noguchi T, Sato T, and Takeno S. (2002) Biological analysis of gastrointestinal stromal tumors. Oncol Rep 9,1277-1282.
42.Dejka M. Steinert, Mauricio Oyarzo. (2006). Expression of Bcl-2 in Gastrointestinal Stromal Tumors. Cancer 106,1617-1623
43.Crosby JA, Catton CN, and Davis A. (2001). Malignant gastrointestinal stromal tumors of the small intestine: a review of 50 cases from a prospective database. Ann Surg Oncol. 8,50 -59
44.Maria Debiec-Rychtera, Raf Sciotb. (2006). KIT mutations and dose selection for imatinib in patients with advanced gastrointestinal stromal tumours. Eur J Can 42,1093 -1103
45.Debiec-Rychter M, Dumez H, and Judson I. (2004). Use of c-KIT/PDGFRA mutational analysis to predict the clinical response to imatinib in patients with advanced gastrointestinal stromal tumours entered on phase I and II studies of the EORTC Soft Tissue and Bone Sarcoma Group. Eur J Cancer. 40,689-695.
46.Heinrich MC, Shoemaker JS, and Corless CL. (2005). Correlation of target kinase genotype with clinical activity of imatinib mesylate (IM) in patients with metastatic GI stromal tumors (GISTs) expressing KIT (KIT). J Clin Oncol. 23(16 suppl):
47.Demetri GD, Desai J, and Fletcher JA. (2004). SU11248, a multi-targeted tyrosine kinase inhibitor, can overcome imatinib (IM) resistance caused by diverse genomic mechanisms in patients with metastatic gastrointestinal stromal tumor (GIST). J Clin Oncol. 22,3001.
48.Blay JY, Bonvalot S, and Casali P. (2005). Consensus meeting for the management of gastrointestinal stromal tumors: Report of the GIST Consensus Conference of 20-21 March 2004, under the auspices of ESMO. Ann Oncol. 16, 566-578.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top