跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.81) 您好!臺灣時間:2025/10/05 12:07
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:賴字暢
研究生(外文):Tzu-Chang Lai
論文名稱:使用智能計算設計領先-落後控制器
論文名稱(外文):Using Intelligent Computing To Design Lead-Lag Controller
指導教授:洪惠陽
指導教授(外文):Huey-Yang Horng
口試委員:林義隆孫允平洪惠陽
口試委員(外文):Yih-Lon LinYun-Ping SunHuey-Yang Horng
口試日期:2013-07-26
學位類別:碩士
校院名稱:義守大學
系所名稱:電機工程學系碩士在職專班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:88
中文關鍵詞:領先-落後控制器比例-積分-微分控制器時域空間指標基因演算法粒子群聚最佳化
外文關鍵詞:lead-lag controllerproportional-integral-derivative controllertime-domain indexgenetic algorithmsparticle swarm optimization
相關次數:
  • 被引用被引用:0
  • 點閱點閱:998
  • 評分評分:
  • 下載下載:15
  • 收藏至我的研究室書目清單書目收藏:1
本論文主要是使用智能計算用於領先-落後控制器的參數設計。在工業中,比例-積分-微分控制器最常被使用,因為其控制器的系統架構簡易且容易設計。但是在參數的設計上需要憑藉過往的經驗來判斷其好壞,且有積分效應與容易受雜訊干擾等等。以往設計領先-落後控制器,通常使用根軌跡或波德圖進行設計,但無法明確的看出與時域空間的關係。於是在本文使用時域空間中的四個指標:尖峰時間、安定時間、過激量百分比、穩態誤差,並結合智能計算中的兩種方法:基因演算法和粒子群聚最佳化於控制器的參數搜尋與設計。首先決定時域空間的四個指標,之後給定指標的最大上限及最小下限的容許範圍,最後運用電腦強大的計算功能,得到近似於範圍內的設計值。

This study primarily uses intelligent computing to determine the parameters of a lead-lag controller. Proportional-integral-derivative controllers are among the most commonly used devices in industries because of their simple system structure and ease of design. However, the quality of the designed parameters must be assessed based on previous experience. In addition, it’s susceptible to noise and integral windup effect. In the past, root locus or bode plots were typically employed when designing lead-lag controller parameters. However, a clear relationship between the parameters and time domains cannot be observed. Therefore, this study employs the four time-domain indices, that is, peak time, settling time, percent overshoot, and steady-state error. Two methods of intelligent computing, genetic algorithm and particle swarm optimization, are combined with the four indices to search and design the controller parameters. The four time-domain indices were determined and allocated a maximum and minimum tolerance. Finally, using powerful intelligent computing capabilities, the design values were obtained within the tolerance.
摘要I
ABSTARCT II
致謝III
目錄IV
圖目錄VII
表目錄IX
第一章 緒論1
1.1 前言1
1.2 文獻回顧2
1.3 研究目的4
1.4 研究架構5
第二章 領先-落後控制系統6
2.1 回授控制系統架構6
2.2 相位領先控制7
2.3 相位落後控制8
2.4 相位領先-落後控制9
第三章 時域指標規格11
3.1 暫態響應11
3.2 穩態誤差13
3.2.1 單位回授系統的穩態誤差 13
3.2.2 非單位回授系統的穩態誤差17
3.3 時域目標函數18
第四章 研究方法20
4.1 初始族群設定20
4.2 基因演算法21
4.2.1 傳統式基因演算法步驟22
4.2.2 改良式基因演算法24
4.3 粒子群聚最佳化25
4.3.1 傳統式粒子群聚最佳化25
4.3.2 改良式粒子群聚最佳化27
4.4 盒鬚圖(Box-plot)27
第五章 實驗結果28
5.1 參數設定說明29
5.2Plant1實驗與模擬結果32
5.3 Plant2實驗與模擬結果37
5.4 Plant3實驗與模擬結果42
5.5 Plant4實驗與模擬結果47
5.6 所有受控體實驗與模擬結果比較52
第六章 結論54
參考文獻55
附錄59
附錄(1.1) GA 的實驗數據-Plant1 59
附錄(1.2) PSO的實驗數據-Plant1 60
附錄(1.3) GA 的實驗數據-Plant2 61
附錄(1.4) PSO的實驗數據-Plant2 62
附錄(1.5) GA 的實驗數據-Plant3 63
附錄(1.6) PSO的實驗數據-Plant3 64
附錄(1.7) GA 的實驗數據-Plant4 65
附錄(1.8) PSO的實驗數據-Plant4 66
附錄(2.1) 粒子群聚最佳化原始程式碼-MATLAB 67
附錄(2.2) 傳統式初始族群設定-Plant1 74
附錄(2.3) 改良式初始族群設定-Plant1 75
附錄(2.4) 基因演算法內部設定參數76
附錄(2.5) 粒子群聚最佳化內部設定參數77
圖目錄
圖2.2 單位回授控制系統方塊圖7
圖2.3 非單位回授控制系統方塊圖7
圖2.4 相位落後控制器的極點-零點分布9
圖3.2單位回授控制系統13
圖3.3非單位回授控制系統17
圖3.4等效控制系統17
圖4.1盒鬚圖示意圖27
圖5.1研究案例的系統架構圖28
圖5.2a GA最佳解的步階響應33
圖5.2b PSO最佳解的步階響應33
圖5.3a Plant1所有較佳解的步階響應34
圖5.3b Plant1所有較佳解的步階響應34
圖5.3c Plant1所有較佳解的步階響應35
圖5.3d Plant1所有較佳解的步階響應35
圖5.4 Plant1所有解的盒鬚圖36
圖5.5a GA最佳解的步階響應38
圖5.5b PSO最佳解的步階響應38
圖5.6a Plant2所有較佳解的步階響應39
圖5.6b Plant2所有較佳解的步階響應39
圖5.6c Plant2所有較佳解的步階響應40
圖5.6d Plant2所有較佳解的步階響應40
圖5.7 Plant2所有解的盒鬚圖41
圖5.8a GA最佳解的步階響應43
圖5.8b PSO最佳解的步階響應43
圖5.9a Plant3所有較佳解的步階響應44
圖5.9b Plant3所有較佳解的步階響應44
圖5.9c Plant3所有較佳解的步階響應45
圖5.9d Plant3所有較佳解的步階響應45
圖5.10 Plant3所有解的盒鬚圖46
圖5.11a GA最佳解的步階響應48
圖5.11b PSO最佳解的步階響應48
圖5.12a Plant4所有較佳解的步階響應49
圖5.12b Plant4所有較佳解的步階響應49
圖5.12c Plant4所有較佳解的步階響應50
圖5.12d Plant4所有較佳解的步階響應50
圖5.13 Plant4所有解的盒鬚圖51 
表目錄
表2.1 相位領先-落後比較表10
表3.1 步階、斜坡、拋物線輸入的穩態誤差分析18
表5.1 四個案例控制器的設計條件31
表5.2 Plant1最佳補償器的參數和步階響應32
表5.3 Plant2最佳補償器的參數和步階響應37
表5.4 Plant3最佳補償器的參數和步階響應42
表5.5 Plant4最佳補償器的參數和步階響應47
表5.6 智能計算實驗結果比較- Plant1 52
表5.7 智能計算實驗結果比較- Plant2 52
表5.8 智能計算實驗結果比較- Plant3 53
表5.9 智能計算實驗結果比較- Plant4 53
[1]莊政義譯(2011),現代控制工程(初版),台北:東華書局。(譯自Katsuhiko Ogata, 2010)
[2]許國根、賈瑛編著(2012),模式识別与智能計算的MATLAB实现(初版),北京:北京航空航天大學出版社。
[3]F. Golnaraghi and B. Kuo, Automatic Control Systems, 9th ed. John Wiley & Sons, Inc. 2010.
[4]N. S. Nise, Control Systems Engineering, 6th ed. John Wiley & Sons, Inc. 2011.
[5]N. Tan and D. P. Atherton, “Design of Stabilizing PI and PID Controllers,” International Journal of Systems Science, Vol. 37, No. 8, pp. 543-554, June 2006.
[6]D. P. Atherton and S. Majhi, “Limitations of PID Controllers,” Proceedings of the American Control Conference San Diego, California, pp. 3843-3847, 1999.
[7]K. J. Åström and R. M. Murray, Feedback Systems: An Introduction For Scientists And Engineers, V2.10b, Princeton University Press, February 2009.
[8]H. B. Shin and J. G. Park, “Anti-Windup PID Controller With Integral State Predictor for Variable-Speed Motor Drives,” IEEE Transactions on Industrial Electronics, Vol. 59, No. 3, pp. 1509-1516, Mar 2012.
[9]Purtojo and Wahyudi, “Integral Anti-Windup Scheme of Full-State Feedback Control for Point-to-Point (PTP) Positioning System,” International Conference on Electronic Design, Dec 2008.
[10]J. H. Holland, “Adaptation in Natural and Artificial Systems,” The University of Michigan Press, 1975.
[11]J. Kennedy and R. C. Eberhart, “Particle swarm optimization,” in: Proc. IEEE Int. Conf. on Neural Networks, Perth, Australia, Vol. 4, pp. 1942-1948, 1995.
[12]J. Kennedy and R. Eberhart, “A New Optimizer Using Particle Swarm Theory,” Micro Machine and Human Science, pp. 39-43, 1995.
[13]W. Zhang, H. Li, Q. Zhao, and H. Wang, “Guidelines for Parameter Selection in Particle Swarm Optimization According to Control Theory,” Natural Computation, Vol. 3, pp. 520-524, 2009.
[14]H. C. Chen and S. H. Chang, “Genetic Algorithms Based Optimization Design of a PID Controller for an Active Magnetic Bearing,” International Journal of Computer Science and Network Security, Vol. 6, No. 12, pp. 95-99, 2006.
[15]Z. L. Gaing, “A Particle Swarm Optimization Approach for Optimum Design of PID Controller in AVR System,” IEEE Transactions on Energy Conversion, Vol. 19, No. 2, pp. 384-391, 2004.
[16]N. Tan, “Computation of Stabilizing Lag/Lead Controller Parameters,” Computers and Electrical Engineering, Vol. 29, pp. 835-849, November 2003.
[17]H. Y. Horng, Z. C. Lai and Y. P. Sun, “The Lag-Lead Controller Design Based on Genetic Algorithms Method,” 5th Electronic Technology Symposium, Kaohsiung, Taiwan, pp. 680-683, June 1, 2012.
[18]H. Y. Horng, Z. C. Lai and Y. P. Sun, “Using Genetic Algorithms to Design Second Order Controller,” 5th Electronic Technology Symposium, Kaohsiung, Taiwan, pp. 540-543, June 1, 2012.
[19]H. Y. Horng, “Lead- Lag Compensator Design Based on Genetic Algorithms,” Conference on Technologies and Applications of Artificial Intelligence (TAAI), pp. 80-85, 2012.
[20]H. Y. Horng, “Lead-Lag Compensator Design Based On Greedy Particle Swarm Optimization,” Next-Generation Electronics (ISNE), pp. 579-581, 2013.
[21]H. Y. Horng an Z. C. Lai, “Using Interval Time-Domain Objective Functions to Design Lead-Lag Compensator,” 6th Electronic Technology Symposium, Kaohsiung, Taiwan, 2013.
[22]Z. C. Lai and H. Y. Horng, “Lead-Lag Compensator Design Based On Intelligent Computing,” 6th Electronic Technology Symposium, Kaohsiung, Taiwan, 2013.
[23]Y. Duan, R. G. Harley, and T. G. Habetler, “Comparison of Particle Swarm Optimization and Genetic Algorithm in The Design of Permanent Magnet Motors,” Power Electronics and Motion Control Conference, pp. 822-825, 2009.
[24]J. Kennedy and W. M. Spears, “Matching Algorithms to Problems: An Experimental Test of The Particle Swarm and Some Genetic Algorithms on The Multimodal Problem Generator,” Evolutionary Computation Proceedings, pp. 78-93, 1998.
[25]C. Ou and W. Lin, “Comparison Between PSO and GA for Parameters Optimization of PID Controller,” Mechatronics and Automation, pp. 2471-2475, 2006.
[26]R. S. Yahya, “Genetic Algorithm and Particle Swarm Optimization in Engineering Electromagnetics,” Applied Electromagnetics and Communications, pp. 1-5, 2003.
[27]Dr. Karl and O. Jones, “Comparison of Genetic Algorithm and Particle Swarm Optimisation,” International Conference on Computer Systems and Technologies, pp. 611-616, 2005.
[28]R. Hassan, B. Cohanim and O. Weck, “A Comparison of Particle Swarm Optimization and the Genetic Algorithm,” Structures, Structural Dynamics, and Materials Conference, 2005.
[29]R. E. Perez and K. Behdinan. “Particle Swarm Approach For Structural Design Optimization,” Computers and Structures, Vol. 85 , pp. 1579-88, 2007.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊