跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.152) 您好!臺灣時間:2025/11/01 18:49
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:曹巧姮
研究生(外文):Tsao, Chiao-Heng
論文名稱:以無電極金屬沉積法製備矽奈米線陣列及其光電性質之研究
論文名稱(外文):Fabrication of Silicon Nanowire Array Through the Metal-induced Wet Chemical Etching Method and Its Photovoltaic Properties
指導教授:戴念華戴念華引用關係
指導教授(外文):Tai, Nyan-Hwa
口試委員:戴念華李紫原洪傳獻
口試日期:2011-07-12
學位類別:碩士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:99
中文關鍵詞:矽奈米線太陽能電池
外文關鍵詞:silicon nanowiresolar cell
相關次數:
  • 被引用被引用:0
  • 點閱點閱:300
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究主要利用兩種方式製備矽奈米線陣列,一是直接將矽晶片浸泡於氫氟酸與硝酸銀的水溶液中,利用無電極金屬沉積法(electroless metal deposition, EMD)蝕刻出大面積的矽奈米線陣列,但溶液中的銀離子很容易聚集在一起,形成顆粒大小不均的銀顆粒,使得矽奈米線的線徑粗細不一;為改善矽奈米線的均勻性,本研究採取另一種方式製備矽奈米線,先藉由陽極氧化鋁(Anodic Aluminum Oxide, AAO)作為模板,覆蓋一層均勻的金奈米顆粒於矽晶片表面作為金屬催化劑,接著將試片浸泡於氫氟酸與過氧化氫溶液中進行蝕刻,以此方式可得到線徑較為一致的矽奈米線陣列。藉由可見光光譜儀分析其反射率,發現矽奈米線陣列具有良好的抗反射特性,且其反射率會隨著反應時間的增長而降低,表示較長的矽奈米線擁有較好的抗反射特性,適合用來製備太陽能電池。因此,本研究利用矽奈米線陣列製備太陽能電池,並量測其光電轉換效率及光譜響應的量測,發現較長的矽奈米線表面具有較多的缺陷,會加速載子的表面複合速率,使得效率降低。綜合抗反射性及表面缺陷兩項因素,可知唯有具備適當長度的矽奈米線太陽能電池才有較好的效率。
Large area SiNW arrays were successfully prepared by immersing a silicon wafer into an aqueous solution of AgNO3 and HF in an electroless metal deposition (EMD) process. However, in the process the Ag clusters easily aggregated, forming large Ag particles of various sizes, which in turn resulted in silicon wires with a large size distribution. To improve the uniformity of the SiNW arrays, uniform dispersed gold nanoparticles were used as the cathode instead, followed by the etching process using H2O2/HF solution. The growth conditions, morphologies and anti-reflection properties of SiNW arrays have been studied. Ultraviolet-visible spectroscopy analysis reveals that the SiNW has remarkable anti-reflection property, as compare with the plane silicon wafer. The reflectance of SiNW is found to decrease with increasing reaction time. The simple, inexpensive and easily scalable process to fabricate a large area silicon anti-reflection surface is a promising process for silicon-based solar cell. We used the synthesized SiNWs to fabricate solar cells. According to current-voltage curve and monochromatic incident photon-to-electron conversion efficiency(IPCE) analysis, we knew that there are many defects on the SiNW surface, which can act as recombination centers and enhance the surface recombination rate. Therefore, only the SiNW solar cell with appropriate length, which is enough to trap light but not too long for cause serious recombination, shows better performance than planer-Si solar cell.
目錄
摘要..........................................................................................................Ⅰ
Abstract....................................................................................................Ⅱ
誌謝..........................................................................................................Ⅲ
目錄.........................................................................................................Ⅴ
表目錄.....................................................................................................Ⅷ
圖目錄......................................................................................................Ⅹ
第一章 緒論..............................................................................................1
1.1概述..............................................................................................1
1.2研究動機......................................................................................3
第二章 文獻回顧......................................................................................5
  2.1矽奈米線的發展..........................................................................5
2.2矽奈米線的製備方法..................................................................5
2.2.1無電極金屬沉積法(EMD) ...............................................6
2.2.2預積金屬後再進行氧化還原法.......................................7
2.2.3陽極氧化鋁板(AAO)為模板的電化學蝕刻....................7
2.3矽奈米線太陽能電池.................................................................13
2.4太陽能電池原理.........................................................................14
2.4.1基本原理.........................................................................15
2.4.2電路模型..........................................................................18
2.4.3各類型太陽能電池發展現況..........................................19
第三章 實驗步驟與研究方法................................................................32
  3.1實驗設計流程.............................................................................32
3.2實驗設備.....................................................................................33
3.2.1實驗用氣體及藥品..........................................................33
3.2.2儀器介紹..........................................................................33
  3.3實驗步驟.....................................................................................34
3.3.1實驗前處理......................................................................34
3.3.2無電極金屬沉積法蝕刻矽奈米線..................................35
3.3.3以陽極氧化鋁膜做模板配合電化學蝕刻矽奈米線......35
3.3.4太陽能電池元件製備......................................................36
  3.4試片分析.....................................................................................38
3.4.1掃描式電子顯微鏡(SEM) ..............................................38
3.4.2紫外光/可見光吸收光譜儀..........................................38
3.4.3展部電阻量測..................................................................39
3.4.4電流-電壓特性曲線量測..............................................40
3.4.5 IPCE量測(Incident Photon Conversion Efficiency) ......40
第四章 結果與討論................................................................................51
  4.1矽奈米線陣列之SEM分析及其結果.......................................51
4.2奈米線陣列之抗反射特性.........................................................55
4.3光電性質探討............................................................................56
4.3.1太陽能電池接面之形成..................................................56
4.3.2太陽能電池量測結果......................................................58
第五章 結論............................................................................................92
第六章 參考文獻....................................................................................93

[1] T. Qiu, X. L. Wu, X. Yang, G. S. Huang, and Z. Y. Zhang, “Self-assembled growth and optical emission of silver-capped silicon nanowires”, Applied Physic Letters, Vol. 84, 3867 ( 2004)
[2] Z. Huang, H. Fang, and J. Zhu, “Fabrication of silicon nanowire arrays with controlled diameter, length, and density”, Advanced Materials, Vol. 19, 744 (2007)
[3] J. Huang, S. Y. Chiam, H. H. Tan, S. Wang, and W. K. Chim, “Fabrication of silicon nanowires with precise diameter control using metal nanodot arrays as a hard mask blocking material in chemical etching”, Chemistry of Materials, Vol. 22, 4111 (2010)
[4] K. Q. Peng, Y. J. Yan, S. P. Gao, and J. Zhu, “Dendrite-assisted growth of silicon nanowires in electroless metal deposition”, Advanced Functional Materials, Vol. 13, 127 (2003)
[5] K. Q. Peng, and J. Zhu, “Simultaneous gold deposition and formation of silicon nanowire arrays”, Journal of Electroanalytical Chemistry, Vol. 558, 35 (2003)
[6] K. Q. Peng, and J. Zhu, “Morphological selection of electroless metal deposits on silicon in aqueous fluoride solution”, Electrochimica Acta, Vol. 49, 2563 (2004)
[7] N. Megouda, R. Douani, T. Hadjersi, and R. Boukherroub, “Formation of aligned silicon nanowire on silicon by electroless etching in HF solution”, Journal of Luminescence, Vol. 129, 1750 (2009)
[8] K. Q. Peng, A. J. Lu, R. Q. Zhang, and S. T. Lee, “Motility of Metal Nanoparticles in Silicon and Induced Anisotropic Silicon Etching”, Advanced Functional Materials, Vol. 18, 3026 (2008)
[9] K. W. Kolasinski, “Silicon nanostructures from electroless electro- chemical etching”, Current Opinion in Solid State and Materials Science, Vol. 9, 73 (2005)
[10] X. Li, and P. W. Bohn, “Metal-assisted chemical etching in HF/H2O2 produces porous silicon”, Applied Physic Letters, Vol. 77, 2572 (2000)
[11] Y. Harada, X. Li, P. W. Bohn, and R. G. Nuzzo, “Catalytic amplification of the soft lithographic patterning of Si. Nonelectrochemical orthogonal fabrication of photoluminescent porous Si pixel arrays”, Journal of the American Chemical Society, Vol. 123, 8709 (2001)
[12] S. Chattopadhyay, X. Li, and P. W. Bohn, “In-plane control of morphology and tunable photoluminescence in porous silicon produced by metal-assisted electroless chemical etching”, Journal of Applied Physic, Vol. 91, 6134 (2002)
[13] S. Chattopadhyay, and P. W. Bohn, “Direct-write patterning of microstructured porous silicon arrays by focused-ion-beam Pt deposition and metal-assisted electroless etching”, Journal of Applied Physic, Vol. 96, 6888 (2004)
[14] A. P. Li, F. Müller, A. Birner, K. Nielsch, and U. Gösele, “Hexagonal pore arrays with a 50–420 nm interpore distance formed by self-organization in anodic alumina”, Journal of Applied Physics, Vol. 84,11 (1998)
[15] N. Taşaltın, S. Öztürk, N. Kılınç, H. Yüzer, and Z. Z. Öztürk, “Simple fabrication of hexagonally well-ordered AAO template on silicon substrate in two dimensions”, Applied Physic A, Vol. 95, 781 (2009)
[16] V. P. Parkhutik, and V. I. Shershulsky, “Theoretical modelling of porous oxide growth on aluminium”, Journal of Physics D: Applied Physics, Vol. 25, 1258 (1992)
[17] O. Jessensky, F. Műller, and U. Gősele, “Self-organized formation of hexagonal pore arrays in anodic alumina”, Applied Physic Letters, Vol. 72, 1173 (1998)
[18] Y. Lei, and W. K. Chim, “Shape and size control of regularly arrayed nanodots fabricated using ultrathin alumina masks”, Chemistry of Materials, Vol. 17, 580 (2005)
[19] C. Delerue, G. Allan, and M. Lannoo, “Theoretical aspects of the luminescence of porous silicon”, Physical Review B, Vol. 48, 11024 (1993)
[20] E. A. Dalchiele, F. Martín, D. Leinen, R. E. Marotti, J. R. Ramos-Barrado, “Synthesis, structure and photoelectrochemical properties of single crystalline silicon nanowire arrays”, Thin Solid Films, Vol. 518, 1804 (2010)
[21] S. K. Srivastava, D. Kumar, P. K. Singh, M. Kar, V. Kumar, M. Husain, “Excellent antireflection properties of vertical silicon nanowire arrays”, Solar Energy Materials & Solar Cells, Vol. 94, 1506 (2010)
[22] K. Peng, Y. Xu, Y. Wu, Y. Yan, S. T. Lee, and J. Zhu, “Aligned single-crystalline Si nanowire arrays for photovoltaic applications”, Small, Vol. 1, 1062 (2005)
[23] K. Peng, X. Wang, and S. T. Lee, “Silicon nanowire array photo- electrochemical solar cells”, Applied Physic Letters, Vol. 92, 163103 (2008)
[24] S. K. Srivastava, D. Kumar, P. K. Singh, and V. Kuma, “Silicon nanowire arrays based “black silicon” solar cells”, Conference: Photovoltaic Specialists Conference (PVSC), 2009 34th IEEE
[25] J. Rappich, S. Lust, I. Sieber, W. Henrion, J. K. Dohrmann, W. Fuhs, “Light trapping by formation of nanometer diameter wire-like structures on µc-Si thin films”, Journal of Non-Crystalline Solids, Vol. 266, 284 (2000)
[26] M. Jeon, K. Kamisako, “Synthesis and characterization of silicon nanowires using tin catalyst for solar cells application”, Materials Letters, Vol. 63, 777 (2009)
[27] J. Zhu, Z. Yu, G. F. Burkhard, C. M. Hsu, S. T. Connor, Y. Xu, Q. Wang, M. McGehee, S. Fan, and Y. Cui, “Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays”, Nano Letters, Vol. 9, 279 (2009)
[28] E. Garnett, and P. Yang, “Light trapping in silicon nanowire solar cells”, Nano Letters, Vol. 10, 1082 (2010)
[29] L. Hu, and G. Chen, “Analysis of optical absorption in silicon nanowire arrays for photovoltaic applications”, Nano Letters, Vol. 7, 3249 (2007)
[30] H. Fang , X. Li, S. Song , Y. Xu, and J. Zhu, “Fabrication of slantingly-aligned silicon nanowire arrays for solar cell applications”, Nanotechnology, Vol. 19, 255703 (2008)
[31] E. C. Garnett, and P. Yang, “Silicon nanowire radial p-n junction solar cells”, Journal of the American Chemical Society, Vol. 130, 9224 (2008)
[32] T. Stelzner, M. Pietsch, G. Andrä, F. Falk, E. Ose, and S. Christiansen, “Silicon nanowire-based solar cells”, Nanotechnology, Vol. 19, 295203 (2008)
[33] H. D. Um, J. Y. Jung, H. S. Seo, K. T. Park , S. W. Jee, S. A. Moiz, and J. H. Lee, “Silicon nanowire array solar cell prepared by metal-induced electroless etching with a novel processing technology”, Japanese Journal of Applied Physics, Vol. 49, 04DN02 (2010)
[34] D. Kumar, S. K. Srivastava, P. K. Singh, M. Husain, V. Kumar, “Fabrication of silicon nanowire arrays based solar cell with improved performance”, Solar Energy Materials & Solar Cells, Vol. 95, 215 (2010)
[35] L. Tsakalakos, J. Balch, J. Fronheiser, B. A. Korevaar, O. Sulima, and J. Rand, “Silicon nanowire solar cells”, Applied Physic Letters, Vol. 91, 233117 (2007)
[36] M. D. Kelzenberg, D. B. Turner-Evans, B. M. Kayes, M. A. Filler, M. C. Putnam, N. S. Lewis, and H. A. Atwater, “Photovoltaic measurements in single-nanowire silicon solar cells”, Nano Letters, Vol.8, 710 (2007)
[37] B. K. Teo, S. P. Huang, R.Q. Zhang, W. K. Li, “Theoretical calculations of structures and properties of one-dimensional silicon-based nanomaterials: Particularities and peculiarities of silicon and silicon-containing nanowires and nanotubes”, Coordination Chemistry Reviews, Vol. 253, 2935 (2009)
[38] A. Fantoni, M. Viera, and R. Martins, “Influence of the intrinsic layer characteristics on a-Si:H p–i–n solar cell performance analysed by means of a computer simulation”, Solar Energy Materials & Solar Cells, Vol. 73, 151 (2002)
[39] T. Söderström, F. J. Haug, V. Terrazzoni-Daudrix, and C. Ballif, “Flexible micromorph tandem a-Si/μc-Si solar cells”, Journal of Applied Physics, Vol. 107,1 (2010)
[40] Semiconductor Physics and Devices: basic principles (3rd Edition), D. A .Neamen, Dubuque, McGraw-Hill (2003)
[41] Solar Cells: Operating Principles, Technology, and System Applications, M. A. Green, Englewood Cliffs, Prentice-Hall (1982)
[42] 黃惠良等著,太陽電池,台北市,五南圖書(2008)
[43] Silicon Solar Cells: Advanced Principles & Practice, M. A. Green, Kensington, Centre for Photovoltaic Devices (1995)
[44] Semiconductor Optoelectronic Devices (2nd Edition), P. Bhattacharya, Upper Saddle River, Prentice Hall (2003)
[45] A. G. Aberle, “Surface passivation of crystalline silicon solar cells: a review”, Progress in Photovoltaics, Vol. 8, 473 (2000)
[46] M. A. Green, K. Emery, Y. Hishikawa, W. Warta, “Solar cell efficiency tables (version 37)”, Progress in Photovoltaics, Vol. 19, 84 (2011)
[47] J. Zhao, A. Wang, M. A. Green, “High-efficiency PERL and PERT silicon solar cells on FZ and MCZ substrates”, Solar Energy Materials & Solar Cells, Vol. 65, 429 (2001)
[48] 汪建民,材料分析,新竹市,中國材料科學學會 (1998)
[49] 黃文雄,儀器總覽-化學分析儀器,新竹市,行政院國家科學委員會精密儀器發展中心 (1998)
[50] M.W. Denhoff, “An accurate calculation of spreading resistance”, Journal of Physics D: Applied Physics, Vol. 39, 1761 (2006)
[51] http://www.enli.com.tw/
[52] 雷永泉,新能源材料,台北縣,新文京開發 (2004)

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊