跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.176) 您好!臺灣時間:2025/09/09 10:28
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:廖偉如
研究生(外文):LIAO, WEI-JU
論文名稱:探討SCUBE1在急性腎臟損傷模式中之保護角色與其黏附至細胞表面之機制
論文名稱(外文):Unraveling the Protective Role of SCUBE1 in Acute Kidney Injury and Its Cell Surface-binding Mechanisms
指導教授:楊瑞彬楊瑞彬引用關係
指導教授(外文):YANG, RUEY-BING
口試委員:陳建璋徐松錕黃彥華林恒
口試委員(外文):CHEN, CHIN-CHANGSHYUE, SONG-KUNHUANG, YEN-HUALIN, HENG
口試日期:2016-05-12
學位類別:博士
校院名稱:國防醫學院
系所名稱:生命科學研究所
學門:生命科學學門
學類:生物學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:英文
論文頁數:121
中文關鍵詞:急性腎臟損傷骨塑型蛋白7黏附細胞
外文關鍵詞:SCUBE1acute kidney injurybone morphogenetic protein 7membrane-tethering
相關次數:
  • 被引用被引用:0
  • 點閱點閱:207
  • 評分評分:
  • 下載下載:1
  • 收藏至我的研究室書目清單書目收藏:0
SCUBE1屬於一個嶄新的SCUBE醣蛋白家族,具有分泌且可附著於細胞膜上的特性, SCUBE1基因轉譯出約含1000個胺基酸之蛋白質,其蛋白質結構包含: N端之訊號序列 (signal peptide)、9個似表皮生長因子之重複片段 (EGF-like repeats)、1個間隔區段 (spacer region)、3個富含半胱胺酸之模組 (cysteine-rich motif) 和C端含有CUB之區域 (CUB domain)。我們先前的研究利用斑馬魚動物模式探討scube1基因在胚胎發育中的功能,在細胞膜上的SCUBE1與BMP受體形成複合體,透過調控BMP活性而影響胚胎時期的血球生成。然而,目前SCUBE1附著於細胞膜的機制仍未知,且其N-醣基化的功能尚未被驗證。此外,在小鼠腎臟損傷模式中,腎小管週邊微血管內皮細胞會增加SCUBE1的表達,並以旁分泌的方式 (paracrine) 促使受損之腎臟修復。但是,腎臟上皮細胞的SCUBE1於腎臟損傷和修復之重要性及其確切的保護機制為何,仍待進一步釐清。本論文分為兩個部分: 第二章詳細探討SCUBE1附著於細胞膜的機制;第三章利用Scube1-Δ2老鼠驗證SCUBE1於腎臟病理學之角色。
在第二章中,我們提供了嶄新的機制解釋SCUBE1如何黏附於細胞膜上,並證實SCUBE1之N-醣基化修飾在斑馬魚早期的造血系統具有重要生物功能。本章研究利用分子生物實驗技術,找出間隔區段內一段帶有大量正電荷的區間 (胺基酸501-550) 可藉由靜電吸引力與帶負電荷之硫酸乙醯肝素蛋白聚醣結合而黏附於細胞膜上;此外,以肽-N端切醣素 (PNGaseF) 去除富含半胱胺酸模組內之N-醣化修飾,可得知其N-醣化修飾對於黏附於細胞膜上之重要性,且可能是透過與凝集素 (lectin) 結合而黏附在細胞膜上;而SCUBE1必須黏附於膜上才能調節BMP訊號傳遞。最後,利用斑馬魚模式驗證SCUBE1之N-醣化修飾在活體的重要性,利用antisense morpholino (MO) 的方式抑制scube1的轉譯,減少scube1表達會進一步抑制胚胎造血和紅血球標的基因的表達 (scl and gata1),若同時注射野生型或N-醣化缺失之scube1訊息核糖核酸 (mRNA) 於缺乏scube1表現的斑馬魚胚胎內,僅野生型而非N-醣化缺失之scube1訊息核糖核酸能恢復造血和紅血球標的基因表達。我們的研究說明了SCUBE1至少藉由兩種不同的機制附著於細胞膜上,也利用斑馬魚模式闡明了SCUBE1之N-醣基化修飾於活體的重要性。
在第三章中,我們驗證了SCUBE1能保護腎臟免於急性腎臟損傷。在本章中,我們將WT和Scube1-Δ2老鼠施予典型的腎臟缺血再灌流手術,分析腎臟病理組織學、腎臟損傷生物指標、BMP訊號傳遞、細胞凋亡、細胞修復,與WT老鼠比較,Scube1-Δ2老鼠具有較嚴重的病理特徵。藉由分子生物和生物化學的分析發現,SCUBE1能與BMP7及其受體形成複合體,並藉此調控BMP訊息傳遞。我們的研究首度證實了腎臟損傷會增加SCUBE1表達,進而增強BMP7的訊息傳遞而達到保護作用。
本論文提供了SCUBE1附著於細胞膜上的機制,並驗證了其N-醣基化修飾的重要性,同時利用腎臟缺血再灌流模式和Scube1-Δ2老鼠,驗證SCUBE1在腎臟損傷過程中藉由增強BMP訊息傳遞而具有保護的作用。

SCUBE1 (signal peptide-CUB [complement protein C1r/C1s, Uegf, and Bmp1]-EGF [epidermal growth factor] domain-containing protein 1) is the founding member of a secreted and membrane-associated SCUBE protein family. This gene codes for protein of approximately 1,000 amino acids forming at least 5 domains: an NH2-terminal signal peptide sequence, 9 tandem repeats of EGF-like motifs, a large spacer region followed by 3 N-glycosylated cysteine-rich (CR) repeats and one CUB domain at the COOH terminus. Our recent zebrafish genetic study revealed that scube1 is critical for and function at the top of regulatory hierarchy of primitive hematopoiesis by acting as a bone morphogenetic protein (BMP) co-receptor on cell-surface to augment BMP signaling. However, the membrane-anchoring mechanism of SCUBE1 and functional implication of its N-linked glycosylation remain largely unknown. In addition, although our previous study provided evidence that the SCUBE1 protein may constitute an critical regulatory protein operant within the renal vascular network exerting reparative effects on adjacent renal tubules in a paracrine fashion, the importance of the renal epithelial SCUBE1 protein in adult kidney injury and endogenous repair remains elusive. This dissertation is composed of two parts: Chapter 2 is focus on dissecting the membrane-tethering mechanisms of SCUBE1; in Chapter 3, we generated new genetic deletion Scube1-Δ2 mutant mice to further elucidate the renal pathophysiological roles of SCUBE1.
In Chapter 2, we describe novel mechanisms in targeting SCUBE1 to the plasma membrane and demonstrate that N-glycans are required for SCUBE1 functions during primitive hematopoiesis in zebrafish. Molecular mapping analysis identified a polycationic segment (amino acids 501-550) in the spacer region required for its membrane tethering via electrostatic interactions possibly with the anionic heparan sulfate proteoglycans. Furthermore, deglycosylation by peptide-N-glycosidase F treatment revealed that N-glycans within the CR motif are essential for membrane recruitment through lectin-mediated surface retention. In addition, the surface-tethering at the plasma membrane of SCUBE1 is critical for its co-receptor function in promoting BMP signaling. Lastly, injection of mRNA encoding zebrafish wild-type but not N-glycan–deficient scube1 restores the expression of hematopoietic and erythroid markers (scl and gata1) in scube1-knockdown embryos. Together, our results revealed SCUBE1 operating by two distinct membrane-anchoring mechanisms through its spacer region and the CR domain, and genetic rescue experiments suggested that N-glycosylation plays an important role in SCUBE1 function in vivo.
In Chapter 3, we identified the protective role of SCUBE1 in acute kidney injury. A new genetic Scube1-Δ2 mutant mouse strain was generated and subjected to renal ischemia-reperfusion injury as compared to WT controls. We found that Scube1-Δ2 mutant mice had a severe renal histopathologies, elevated biomarker levels for acute renal injury, and reduced BMP signaling in association with decreased proliferation and increased apoptosis in renal tubular cells compared with wild-type mice. Molecular and biochemical analyses revealed that SCUBE1 could interact with BMP7 and its receptors, and may act as a BMP co-receptor to augment BMP7 signaling. Together, our data demonstrate for the first time that the protective BMP7 signaling is enhanced by the stress-inducible SCUBE1 after renal I/R and suggest potential targeted approaches for acute kidney injury.
In summary, our studies identified the membrane-tethering mechanisms and in vivo biological relevance of N-glycans of SCUBE1 protein. We also revealed that SCUBE1 has the protective effect in acute kidney injury via modulating BMP signaling.

Table of Contents...…………………………………………………………………….i
List of Figures and Tables…………………………………….……………………....iii
Chinese Abstcact…………………………………………………………...………....vi
English Abstract……………………………………………...………………...……viii
Chapter 1. Introduction
1. SCUBE gene family………………….…………………………………………2
2. Rationale for dissecting the membrane-anchoring mechanism(s) of SCUBE1 and the biological function of its N-linked glycosylation……………………………3
3. Acute kidney injury (AKI).…………………………………………………..…4
4. BMP7 signaling pathway in renal disease………………………………………5
5. Rationale for investigating the role of SCUBE1 in AKI…………………..……7
Chapter 2. Electrostatics and N-Glycan-mediated membrane tethering of SCUBE1 is critical for promoting bone morphogenetic protein signaling
1. Summary………………………………………………………………………..9
2. Introduction and specific aims…………………………...……………………10
3. Materials and methods………………………………………………………...12
4. Results………………………………………………………………………... 16
5. Discussion……………………………………………………………………..24
Chapter 3. SCUBE1 protects against acute kidney injury by promoting BMP signaling
1. Summary………………………………………………………………………28
2. Introduction and specific aims………………………………………………...29
3. Materials and methods………………………………………………………... 31
4. Results………………………………………………………………………... 36
5. Discussion……………………………………………………………………..42
Chapter 4. Future Perspectives……………………………………………………..45
References…………………………………………………………….…………….. 48

FIGURE 1. Membrane association of human SCUBE1 is mediated by the spacer region and cysteine-rich (CR) motifs……………………………………………59
FIGURE 2. Cell surface binding assay of SCUBE1 domain-containing GST fusion proteins………………………………………………………………..…60
FIGURE 3. The spacer region and CR domain are involved in the cell surface binding of SCUBE1……………………………………….…………………...…61
FIGURE 4. Localization of SCUBE1 within the caveolin-1-enriched raft microdomain and interaction of SCUBE1 with caveolin-1……….…………………… 63
FIGURE 5. The membrane-tethering ability of SCUBE1 is critical for modulating BMP signaling……………………………………………………………….…65
FIGURE 6. Amino acids 501-550 within the spacer region are critical for membrane-binding ability………………………………………………………....…66
FIGURE 7. A segment of positively charged amino acids in the spacer region is necessary for its tethering on the cell surface …………………….………67
FIGURE 8. The spacer region of SCUBE1 directly binds heparin…………………..69
FIGURE 9. N-glycosylation of recombinant CR protein fragment confers its membrane binding ability …………………………….………………………….… 70
FIGURE 10. N-linked oligosaccharides of the CR motif are crucial for its membrane association Localization of SCUBE1 within the caveolin-1-enriched raft microdomain and interaction of SCUBE1 with caveolin-1………………71
FIGURE 11. N-glycosylation is required for zebrafish Scube1 function in vivo…….72
FIGURE 12. Scube1-WT not Scube1-ΔN can rescue scube1 morphants……………74
FIGURE 13. Lectin blotting profile of SUBE1………………………………………75
FIGURE 14. The spacer region of SCUBE2 and SCUBE3 directly binds heparin……76
FIGURE 15. SCUBE1 mRNA and protein levels were upregulated after renal ischemia-reperfusion (I/R) injury……………………………………………..……77
FIGURE 16. Generation of a targeted deletion (Δ2) allele of Scube1 gene………….78
FIGURE 17. Targeted deletion of Scube1 was confirmed at both mRNA and protein levels……………….…………………………………………………….79
FIGURE 18. Deletion Δ2 mice showed severe histological features after renal I/R injury……………….……………………………………………………80
FIGURE 19. Increased polymorphonuclear leukocyte infiltration and elevated proinflmmatory mediator tumor necrosis factor α (TNF-α) expression in Δ2 and wild-type (WT) control mice…………………..……………….……81
FIGURE 20. Expression of acute renal injury biomarkers is higher in Δ2 than WT mice………………………………………………………………….…..82
FIGURE 21. SCUBE1 binds BMP7 ligand / receptors and augments BMP signaling…………………………………………………………………83
FIGURE 22. Reduced BMP7 signaling in the Δ2 mouse embryonic fibroblasts (MEFs) or Δ2 kidneys…………………………………………………………….85
FIGURE 23. Effect of renal I/R on the expression of BMP7 and BMPRs in WT and Scube1-Δ2 mice………………………………………………………..86
FIGURE 24. Δ2 mice showed more renal tubular cell apoptosis after I/R injury………………………………………………………………….…87
FIGURE 25. Δ2 mice showed decreased renal tubular cell proliferation after I/R injury…………………………………………………………………….88
FIGURE 26. SCUBE1 overexpression enhances BMP signaling and reduces hypoxia/reoxygenation-induced apoptosis in Δ2 proximal tubular epithelial cells (PTECs)……………………………………….……………………89
FIGURE 27. In vitro hypoxia-reoxygenation (H/R) induced Scube1 mRNA and protein expression in HK-2 cells…………………………………………..……..90
FIGURE 28. SCUBE1 mRNA and protein levels were upregulated after chronic unilateral ureteral obstruction (UUO) injury……………………………..91
TABLE 1. Primers used for RT-PCR, Q-PCR and genotyping analyses………………92
TABLE 2. Gender and genotype distribution of Scube1+/Δ2 intercross……………..93

Wu, B. T., Su, Y. H., Tsai, M. T., Wasserman, S. M., Topper, J. N., and Yang, R. B. (2004) A novel secreted, cell-surface glycoprotein containing multiple epidermal growth factor-like repeats and one CUB domain is highly expressed in primary osteoblasts and bones. J. Biol. Chem. 279, 37485-37490
2.Yang, R. B., Ng, C. K., Wasserman, S. M., Colman, S. D., Shenoy, S., Mehraban, F., Komuves, L. G., Tomlinson, J. E., and Topper, J. N. (2002) Identification of a novel family of cell-surface proteins expressed in human vascular endothelium. J. Biol. Chem. 277, 46364-46373
3.Grimmond, S., Larder, R., Van Hateren, N., Siggers, P., Hulsebos, T. J., Arkell, R., and Greenfield, A. (2000) Cloning, mapping, and expression analysis of a gene encoding a novel mammalian EGF-related protein (SCUBE1). Genomics 70, 74-81
4.Xavier, G. M., and Cobourne, M. T. (2011) Scube2 expression extends beyond the central nervous system during mouse development. J Mol Histol 42, 383-391
5.Tsai, M. T., Cheng, C. J., Lin, Y. C., Chen, C. C., Wu, A. R., Wu, M. T., Hsu, C. C., and Yang, R. B. (2009) Isolation and characterization of a secreted, cell-surface glycoprotein SCUBE2 from humans. Biochem. J. 422, 119-128
6.Cheng, C. J., Lin, Y. C., Tsai, M. T., Chen, C. S., Hsieh, M. C., Chen, C. L., and Yang, R. B. (2009) SCUBE2 suppresses breast tumor cell proliferation and confers a favorable prognosis in invasive breast cancer. Cancer Res. 69, 3634-3641
7.Haworth, K., Smith, F., Zoupa, M., Seppala, M., Sharpe, P. T., and Cobourne, M. T. (2007) Expression of the Scube3 epidermal growth factor-related gene during early embryonic development in the mouse. Gene Expr. Patterns 7, 630-634
8.Kawakami, A., Nojima, Y., Toyoda, A., Takahoko, M., Satoh, M., Tanaka, H., Wada, H., Masai, I., Terasaki, H., Sakaki, Y., Takeda, H., and Okamoto, H. (2005) The zebrafish-secreted matrix protein you/scube2 is implicated in long-range regulation of hedgehog signaling. Curr. Biol. 15, 480-488
9.Grimmond, S., Larder, R., Van Hateren, N., Siggers, P., Morse, S., Hacker, T., Arkell, R., and Greenfield, A. (2001) Expression of a novel mammalian epidermal growth factor-related gene during mouse neural development. Mech. Dev. 102, 209-211
10.Xavier, G. M., Economou, A., Senna Guimaraes, A. L., Sharpe, P. T., and Cobourne, M. T. (2010) Characterization of a mouse Scube3 reporter line. Genesis 48, 684-692
11.Tsao, K. C., Tu, C. F., Lee, S. J., and Yang, R. B. (2013) Zebrafish scube1 (signal peptide-CUB (complement protein C1r/C1s, Uegf, and Bmp1)-EGF (epidermal growth factor) domain-containing protein 1) is involved in primitive hematopoiesis. J. Biol. Chem. 288, 5017-5026
12.Hollway, G. E., Maule, J., Gautier, P., Evans, T. M., Keenan, D. G., Lohs, C., Fischer, D., Wicking, C., and Currie, P. D. (2006) Scube2 mediates Hedgehog signalling in the zebrafish embryo. Dev. Biol. 294, 104-118
13.Woods, I. G., and Talbot, W. S. (2005) The you gene encodes an EGF-CUB protein essential for Hedgehog signaling in zebrafish. PLoS Biol. 3, e66
14.Tu, C. F., Tsao, K. C., Lee, S. J., and Yang, R. B. (2014) SCUBE3 (Signal Peptide-CUB-EGF Domain-containing Protein 3) Modulates Fibroblast Growth Factor Signaling during Fast Muscle Development. J. Biol. Chem. 289, 18928-18942
15.Wu, Y. Y., Peck, K., Chang, Y. L., Pan, S. H., Cheng, Y. F., Lin, J. C., Yang, R. B., Hong, T. M., and Yang, P. C. (2011) SCUBE3 is an endogenous TGF-beta receptor ligand and regulates the epithelial-mesenchymal transition in lung cancer. Oncogene 30, 3682-3693
16.Lin, Y. C., Chen, C. C., Cheng, C. J., and Yang, R. B. (2011) Domain and functional analysis of a novel breast tumor suppressor protein, SCUBE2. J. Biol. Chem. 286, 27039-27047
17.Tu, C. F., Yan, Y. T., Wu, S. Y., Djoko, B., Tsai, M. T., Cheng, C. J., and Yang, R. B. (2008) Domain and functional analysis of a novel platelet-endothelial cell surface protein, SCUBE1. J. Biol. Chem. 283, 12478-12488
18.Dai, D. F., Thajeb, P., Tu, C. F., Chiang, F. T., Chen, C. H., Yang, R. B., and Chen, J. J. (2008) Plasma concentration of SCUBE1, a novel platelet protein, is elevated in patients with acute coronary syndrome and ischemic stroke. J. Am. Coll. Cardiol. 51, 2173-2180
19.Ozkan, G., Ulusoy, S., Mentese, A., Karahan, S. C., and Cansiz, M. (2013) New marker of platelet activation, SCUBE1, is elevated in hypertensive patients. Am. J. Hypertens. 26, 748-753
20.Mentese, A., Fidan, E., Sumer, A. U., Karahan, S. C., Sonmez, M., Altay, D. U., Kavgaci, H., and Alver, A. (2012) Is SCUBE 1 a new biomarker for gastric cancer? Cancer Biomark 11, 191-195
21.Turkmen, S., Mentese, S., Mentese, A., Sumer, A. U., Saglam, K., Yulug, E., Turedi, S., and Gunduz, A. (2013) The value of signal peptide-CUB-EGF domain-containing protein 1 and oxidative stress parameters in the diagnosis of acute mesenteric ischemia. Acad. Emerg. Med. 20, 257-264
22.Mentese, A., Yilmaz, G., Sumer, A., Arslan, M., Karahan, S. C., and Koksal, I. (2013) The diagnostic and prognostic significance of SCUBE1 levels in Crimean-Congo hemorrhagic fever. Int. J. Infect. Dis. 17, e1042-1045
23.Erem, C., Civan, N., Coskun, H., Mentese, A., Suleyman, A. K., Altay, D. U., Akgul, Z., and Deger, O. (2015) Signal peptide-CUB-EGF domain-containing protein 1 (SCUBE1) levels in patients with overt and subclinical hyperthyroidism: effects of treatment. Clin. Endocrinol. (Oxf).
24.Chen QH, L. D., Zhou J, Deng G. (2016) Role of signal peptide-Cub-Egf domain-containing protein-1 in serum as a predictive biomarker of outcome after severe traumatic brain injury. Clin. Chim. Acta
25.Chawla, L. S., and Kimmel, P. L. (2012) Acute kidney injury and chronic kidney disease: an integrated clinical syndrome. Kidney Int. 82, 516-524
26.Jang, H. R., Ko, G. J., Wasowska, B. A., and Rabb, H. (2009) The interaction between ischemia-reperfusion and immune responses in the kidney. Journal of molecular medicine (Berlin, Germany) 87, 859-864
27.Scheiermann, C., Colom, B., Meda, P., Patel, N. S., Voisin, M. B., Marrelli, A., Woodfin, A., Pitzalis, C., Thiemermann, C., Aurrand-Lions, M., Imhof, B. A., and Nourshargh, S. (2009) Junctional adhesion molecule-C mediates leukocyte infiltration in response to ischemia reperfusion injury. Arterioscler. Thromb. Vasc. Biol. 29, 1509-1515
28.Zuk, A., Gershenovich, M., Ivanova, Y., MacFarland, R. T., Fricker, S. P., and Ledbetter, S. (2014) CXCR(4)antagonism as a therapeutic approach to prevent acute kidney injury. Am J Physiol Renal Physiol 307, F783-797
29.Basile, D. P., Anderson, M. D., and Sutton, T. A. (2012) Pathophysiology of acute kidney injury. Compr Physiol 2, 1303-1353
30.Vaseva, A. V., and Moll, U. M. (2009) The mitochondrial p53 pathway. Biochim. Biophys. Acta 1787, 414-420
31.Wu, X., Guo, R., Chen, P., Wang, Q., and Cunningham, P. N. (2009) TNF induces caspase-dependent inflammation in renal endothelial cells through a Rho- and myosin light chain kinase-dependent mechanism. Am J Physiol Renal Physiol 297, F316-326
32.Tesch, G. H. (2010) Review: Serum and urine biomarkers of kidney disease: A pathophysiological perspective. Nephrology (Carlton) 15, 609-616
33.Salih, M., Zietse, R., and Hoorn, E. J. (2014) Urinary extracellular vesicles and the kidney: biomarkers and beyond. Am J Physiol Renal Physiol 306, F1251-1259
34.El Sabbahy, M., and Vaidya, V. S. (2011) Ischemic kidney injury and mechanisms of tissue repair. Wiley Interdiscip Rev Syst Biol Med 3, 606-618
35.Bonventre, J. V. (2003) Dedifferentiation and proliferation of surviving epithelial cells in acute renal failure. J. Am. Soc. Nephrol. 14 Suppl 1, S55-61
36.Lin, F., Moran, A., and Igarashi, P. (2005) Intrarenal cells, not bone marrow-derived cells, are the major source for regeneration in postischemic kidney. J. Clin. Invest. 115, 1756-1764
37.Humphreys, B. D., Valerius, M. T., Kobayashi, A., Mugford, J. W., Soeung, S., Duffield, J. S., McMahon, A. P., and Bonventre, J. V. (2008) Intrinsic epithelial cells repair the kidney after injury. Cell Stem Cell 2, 284-291
38.Martin, P., and Parkhurst, S. M. (2004) Parallels between tissue repair and embryo morphogenesis. Development 131, 3021-3034
39.Monte, J. C., Sakurai, H., Bush, K. T., and Nigam, S. K. (2007) The developmental nephrome: systems biology in the developing kidney. Curr. Opin. Nephrol. Hypertens. 16, 3-9
40.Little, M. H. (2006) Regrow or repair: potential regenerative therapies for the kidney. J. Am. Soc. Nephrol. 17, 2390-2401
41.Massague, J., and Wotton, D. (2000) Transcriptional control by the TGF-beta/Smad signaling system. EMBO J. 19, 1745-1754
42.Miyazono, K., Maeda, S., and Imamura, T. (2005) BMP receptor signaling: transcriptional targets, regulation of signals, and signaling cross-talk. Cytokine Growth Factor Rev. 16, 251-263
43.Meng, X. M., Chung, A. C., and Lan, H. Y. (2013) Role of the TGF-beta/BMP-7/Smad pathways in renal diseases. Clin Sci (Lond) 124, 243-254
44.Boon, M. R., van der Horst, G., van der Pluijm, G., Tamsma, J. T., Smit, J. W., and Rensen, P. C. (2011) Bone morphogenetic protein 7: a broad-spectrum growth factor with multiple target therapeutic potency. Cytokine Growth Factor Rev. 22, 221-229
45.Patel, S. R., and Dressler, G. R. (2005) BMP7 signaling in renal development and disease. Trends in molecular medicine 11, 512-518
46.Bottinger, E. P., and Bitzer, M. (2002) TGF-beta signaling in renal disease. J. Am. Soc. Nephrol. 13, 2600-2610
47.Wang, S. N., Lapage, J., and Hirschberg, R. (2001) Loss of tubular bone morphogenetic protein-7 in diabetic nephropathy. J. Am. Soc. Nephrol. 12, 2392-2399
48.Simon, M., Maresh, J. G., Harris, S. E., Hernandez, J. D., Arar, M., Olson, M. S., and Abboud, H. E. (1999) Expression of bone morphogenetic protein-7 mRNA in normal and ischemic adult rat kidney. Am. J. Physiol. 276, F382-389
49.Almanzar, M. M., Frazier, K. S., Dube, P. H., Piqueras, A. I., Jones, W. K., Charette, M. F., and Paredes, A. L. (1998) Osteogenic protein-1 mRNA expression is selectively modulated after acute ischemic renal injury. J. Am. Soc. Nephrol. 9, 1456-1463
50.Hruska, K. A., Guo, G., Wozniak, M., Martin, D., Miller, S., Liapis, H., Loveday, K., Klahr, S., Sampath, T. K., and Morrissey, J. (2000) Osteogenic protein-1 prevents renal fibrogenesis associated with ureteral obstruction. Am J Physiol Renal Physiol 279, F130-143
51.Zeisberg, M., Hanai, J., Sugimoto, H., Mammoto, T., Charytan, D., Strutz, F., and Kalluri, R. (2003) BMP-7 counteracts TGF-beta1-induced epithelial-to-mesenchymal transition and reverses chronic renal injury. Nat. Med. 9, 964-968
52.Wang, Z., Zhao, J., Zhang, J., Wei, J., Zhang, J., and Huang, Y. (2010) Protective effect of BMP-7 against aristolochic acid-induced renal tubular epithelial cell injury. Toxicol. Lett. 198, 348-357
53.Zeisberg, M., Bottiglio, C., Kumar, N., Maeshima, Y., Strutz, F., Muller, G. A., and Kalluri, R. (2003) Bone morphogenic protein-7 inhibits progression of chronic renal fibrosis associated with two genetic mouse models. Am J Physiol Renal Physiol 285, F1060-1067
54.Zeisberg, M., Shah, A. A., and Kalluri, R. (2005) Bone morphogenic protein-7 induces mesenchymal to epithelial transition in adult renal fibroblasts and facilitates regeneration of injured kidney. J. Biol. Chem. 280, 8094-8100
55.Klahr, S., and Morrissey, J. (2003) Obstructive nephropathy and renal fibrosis: The role of bone morphogenic protein-7 and hepatocyte growth factor. Kidney Int. Suppl., S105-112
56.Gould, S. E., Day, M., Jones, S. S., and Dorai, H. (2002) BMP-7 regulates chemokine, cytokine, and hemodynamic gene expression in proximal tubule cells. Kidney Int. 61, 51-60
57.Vukicevic, S., Basic, V., Rogic, D., Basic, N., Shih, M. S., Shepard, A., Jin, D., Dattatreyamurty, B., Jones, W., Dorai, H., Ryan, S., Griffiths, D., Maliakal, J., Jelic, M., Pastorcic, M., Stavljenic, A., and Sampath, T. K. (1998) Osteogenic protein-1 (bone morphogenetic protein-7) reduces severity of injury after ischemic acute renal failure in rat. J. Clin. Invest. 102, 202-214
58.Morrissey, J., Hruska, K., Guo, G., Wang, S., Chen, Q., and Klahr, S. (2002) Bone morphogenetic protein-7 improves renal fibrosis and accelerates the return of renal function. J. Am. Soc. Nephrol. 13 Suppl 1, S14-21
59.Samavarchi-Tehrani, P., Golipour, A., David, L., Sung, H. K., Beyer, T. A., Datti, A., Woltjen, K., Nagy, A., and Wrana, J. L. (2010) Functional genomics reveals a BMP-driven mesenchymal-to-epithelial transition in the initiation of somatic cell reprogramming. Cell Stem Cell 7, 64-77
60.Wang, S., de Caestecker, M., Kopp, J., Mitu, G., Lapage, J., and Hirschberg, R. (2006) Renal bone morphogenetic protein-7 protects against diabetic nephropathy. J. Am. Soc. Nephrol. 17, 2504-2512
61.Zhuang, J., Deane, J. A., Yang, R. B., Li, J., and Ricardo, S. D. (2010) SCUBE1, a novel developmental gene involved in renal regeneration and repair. Nephrol. Dial. Transplant. 25, 1421-1428
62.Labrecque, J., Mc Nicoll, N., Marquis, M., and De Lean, A. (1999) A disulfide-bridged mutant of natriuretic peptide receptor-A displays constitutive activity. Role of receptor dimerization in signal transduction. J. Biol. Chem. 274, 9752-9759
63.Lin, Y. C., Lee, Y. C., Li, L. H., Cheng, C. J., and Yang, R. B. (2014) Tumor suppressor SCUBE2 inhibits breast-cancer cell migration and invasion through the reversal of epithelial-mesenchymal transition. J. Cell Sci. 127, 85-100
64.Yang, H. Y., Cheng, C. F., Djoko, B., Lian, W. S., Tu, C. F., Tsai, M. T., Chen, Y. H., Chen, C. C., Cheng, C. J., and Yang, R. B. (2007) Transgenic overexpression of the secreted, extracellular EGF-CUB domain-containing protein SCUBE3 induces cardiac hypertrophy in mice. Cardiovasc. Res. 75, 139-147
65.Johnson, J. L., Hall, T. E., Dyson, J. M., Sonntag, C., Ayers, K., Berger, S., Gautier, P., Mitchell, C., Hollway, G. E., and Currie, P. D. (2012) Scube activity is necessary for Hedgehog signal transduction in vivo. Dev. Biol. 368, 193-202
66.Tu, C. F., Su, Y. H., Huang, Y. N., Tsai, M. H., Li, L. T., Chen, Y. L., Cheng, C. J., Dai, D. F., and Yang, R. B. (2006) Localization and characterization of a novel protein SCUBE1 in human platelets. Cardiovasc. Res. 71, 486-495
67.Wu, M. Y., Lin, Y. C., Liao, W. J., Tu, C. F., Chen, M. H., Roffler, S. R., and Yang, R. B. (2014) Inhibition of the Plasma SCUBE1, a Novel Platelet Adhesive Protein, Protects Mice Against Thrombosis. Arterioscler. Thromb. Vasc. Biol. 34, 1390-1398
68.Sargiacomo, M., Sudol, M., Tang, Z., and Lisanti, M. P. (1993) Signal transducing molecules and glycosyl-phosphatidylinositol-linked proteins form a caveolin-rich insoluble complex in MDCK cells. J. Cell Biol. 122, 789-807
69.Thisse, C., and Thisse, B. (2008) High-resolution in situ hybridization to whole-mount zebrafish embryos. Nat. Protoc. 3, 59-69
70.Prince, V. E., Moens, C. B., Kimmel, C. B., and Ho, R. K. (1998) Zebrafish hox genes: expression in the hindbrain region of wild-type and mutants of the segmentation gene, valentino. Development 125, 393-406
71.Tukachinsky, H., Kuzmickas, R. P., Jao, C. Y., Liu, J., and Salic, A. (2012) Dispatched and scube mediate the efficient secretion of the cholesterol-modified hedgehog ligand. Cell Rep 2, 308-320
72.Creanga, A., Glenn, T. D., Mann, R. K., Saunders, A. M., Talbot, W. S., and Beachy, P. A. (2012) Scube/You activity mediates release of dually lipid-modified Hedgehog signal in soluble form. Genes Dev. 26, 1312-1325
73.Simons, K., and Toomre, D. (2000) Lipid rafts and signal transduction. Nat Rev Mol Cell Biol 1, 31-39
74.Sharma, P., Sabharanjak, S., and Mayor, S. (2002) Endocytosis of lipid rafts: an identity crisis. Semin. Cell Dev. Biol. 13, 205-214
75.Sehgal, P. B., Guo, G. G., Shah, M., Kumar, V., and Patel, K. (2002) Cytokine signaling: STATS in plasma membrane rafts. J. Biol. Chem. 277, 12067-12074
76.Limpert, A. S., Karlo, J. C., and Landreth, G. E. (2007) Nerve growth factor stimulates the concentration of TrkA within lipid rafts and extracellular signal-regulated kinase activation through c-Cbl-associated protein. Mol. Cell. Biol. 27, 5686-5698
77.Hartung, A., Bitton-Worms, K., Rechtman, M. M., Wenzel, V., Boergermann, J. H., Hassel, S., Henis, Y. I., and Knaus, P. (2006) Different routes of bone morphogenic protein (BMP) receptor endocytosis influence BMP signaling. Mol. Cell. Biol. 26, 7791-7805
78.Saldanha, S., Bragdon, B., Moseychuk, O., Bonor, J., Dhurjati, P., and Nohe, A. (2013) Caveolae regulate Smad signaling as verified by novel imaging and system biology approaches. J. Cell. Physiol. 228, 1060-1069
79.Benchabane, H., and Wrana, J. L. (2003) GATA- and Smad1-dependent enhancers in the Smad7 gene differentially interpret bone morphogenetic protein concentrations. Mol. Cell. Biol. 23, 6646-6661
80.Khandelia, H., Ipsen, J. H., and Mouritsen, O. G. (2008) The impact of peptides on lipid membranes. Biochim. Biophys. Acta 1778, 1528-1536
81.Delacour, D., Cramm-Behrens, C. I., Drobecq, H., Le Bivic, A., Naim, H. Y., and Jacob, R. (2006) Requirement for galectin-3 in apical protein sorting. Curr. Biol. 16, 408-414
82.Vagin, O., Kraut, J. A., and Sachs, G. (2009) Role of N-glycosylation in trafficking of apical membrane proteins in epithelia. Am J Physiol Renal Physiol 296, F459-469
83.Chen, A. T., and Zon, L. I. (2009) Zebrafish blood stem cells. J. Cell. Biochem. 108, 35-42
84.de Jong, J. L., and Zon, L. I. (2005) Use of the zebrafish system to study primitive and definitive hematopoiesis. Annu. Rev. Genet. 39, 481-501
85.Stanley, P., Schachter, H., and Taniguchi, N. (2009) N-glycans. in Essentials of Glycobiology (Varki, A., Cummings, R. D., and Esko, J. D. eds.), 2nd Ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY. pp Chapter 8
86.Varki, A., Etzler, M. E., Cummings, R. D., and Esko, J. D. (2009) Discover and classification of glycan-binding proteins. in Essentials of glycobiology (Varki, A., Cummings, R. D., and Esko, J. D. eds.), 2nd Ed., Cold Spring Harbor Laboratory Press, Cold Sprint Harbor, NY. pp Chapter 26
87.van Deurs, B., Roepstorff, K., Hommelgaard, A. M., and Sandvig, K. (2003) Caveolae: anchored, multifunctional platforms in the lipid ocean. Trends Cell Biol. 13, 92-100
88.Sieber, C., Kopf, J., Hiepen, C., and Knaus, P. (2009) Recent advances in BMP receptor signaling. Cytokine Growth Factor Rev. 20, 343-355
89.Schiffl, H., Lang, S. M., and Fischer, R. (2002) Daily hemodialysis and the outcome of acute renal failure. N. Engl. J. Med. 346, 305-310
90.Edelstein, C. L., Ling, H., and Schrier, R. W. (1997) The nature of renal cell injury. Kidney Int. 51, 1341-1351
91.DuBose, T. D., Jr., Warnock, D. G., Mehta, R. L., Bonventre, J. V., Hammerman, M. R., Molitoris, B. A., Paller, M. S., Siegel, N. J., Scherbenske, J., and Striker, G. E. (1997) Acute renal failure in the 21st century: recommendations for management and outcomes assessment. Am. J. Kidney Dis. 29, 793-799
92.Chawla, L. S., Eggers, P. W., Star, R. A., and Kimmel, P. L. (2014) Acute Kidney Injury and Chronic Kidney Disease as Interconnected Syndromes. N. Engl. J. Med. 371, 58-66
93.Ishani, A., Xue, J. L., Himmelfarb, J., Eggers, P. W., Kimmel, P. L., Molitoris, B. A., and Collins, A. J. (2009) Acute Kidney Injury Increases Risk of ESRD among Elderly. J. Am. Soc. Nephrol. 20, 223-228
94.Breggia, A. C., and Himmelfarb, J. (2008) Primary mouse renal tubular epithelial cells have variable injury tolerance to ischemic and chemical mediators of oxidative stress. Oxid Med Cell Longev 1, 33-38
95.Deglon, N., Tseng, J. L., Bensadoun, J. C., Zurn, A. D., Arsenijevic, Y., Pereira de Almeida, L., Zufferey, R., Trono, D., and Aebischer, P. (2000) Self-inactivating lentiviral vectors with enhanced transgene expression as potential gene transfer system in Parkinson's disease. Hum. Gene Ther. 11, 179-190
96.Vaidya, V. S., Ozer, J. S., Dieterle, F., Collings, F. B., Ramirez, V., Troth, S., Muniappa, N., Thudium, D., Gerhold, D., Holder, D. J., Bobadilla, N. A., Marrer, E., Perentes, E., Cordier, A., Vonderscher, J., Maurer, G., Goering, P. L., Sistare, F. D., and Bonventre, J. V. (2010) Kidney injury molecule-1 outperforms traditional biomarkers of kidney injury in preclinical biomarker qualification studies. Nat. Biotechnol. 28, 478-485
97.Haase-Fielitz, A., Haase, M., and Devarajan, P. (2014) Neutrophil gelatinase-associated lipocalin as a biomarker of acute kidney injury: a critical evaluation of current status. Ann. Clin. Biochem. 51, 335-351
98.Lin, J., Patel, S. R., Cheng, X., Cho, E. A., Levitan, I., Ullenbruch, M., Phan, S. H., Park, J. M., and Dressler, G. R. (2005) Kielin/chordin-like protein, a novel enhancer of BMP signaling, attenuates renal fibrotic disease. Nat. Med. 11, 387-393
99.Soofi, A., Zhang, P., and Dressler, G. R. (2013) Kielin/chordin-like protein attenuates both acute and chronic renal injury. J. Am. Soc. Nephrol. 24, 897-905
100.ten Dijke, P., Korchynskyi, O., Valdimarsdottir, G., and Goumans, M. J. (2003) Controlling cell fate by bone morphogenetic protein receptors. Mol. Cell. Endocrinol. 211, 105-113
101.Nishimura, R., Hata, K., Ikeda, F., Matsubara, T., Yamashita, K., Ichida, F., and Yoneda, T. (2003) The role of Smads in BMP signaling. Front. Biosci. 8, s275-284
102.Wang, S., and Hirschberg, R. (2003) BMP7 antagonizes TGF-beta -dependent fibrogenesis in mesangial cells. Am J Physiol Renal Physiol 284, F1006-1013
103.Tomita, M., Asada, M., Asada, N., Nakamura, J., Oguchi, A., Higashi, A. Y., Endo, S., Robertson, E., Kimura, T., Kita, T., Economides, A. N., Kreidberg, J., and Yanagita, M. (2013) Bmp7 maintains undifferentiated kidney progenitor population and determines nephron numbers at birth. PLoS One 8, e73554
104.Blank, U., Brown, A., Adams, D. C., Karolak, M. J., and Oxburgh, L. (2009) BMP7 promotes proliferation of nephron progenitor cells via a JNK-dependent mechanism. Development 136, 3557-3566
105.Daemen, M. A., de Vries, B., and Buurman, W. A. (2002) Apoptosis and inflammation in renal reperfusion injury. Transplantation 73, 1693-1700
106.Nogae, S., Miyazaki, M., Kobayashi, N., Saito, T., Abe, K., Saito, H., Nakane, P. K., Nakanishi, Y., and Koji, T. (1998) Induction of apoptosis in ischemia-reperfusion model of mouse kidney: possible involvement of Fas. J. Am. Soc. Nephrol. 9, 620-631
107.Kaushal, G. P., Singh, A. B., and Shah, S. V. (1998) Identification of gene family of caspases in rat kidney and altered expression in ischemia-reperfusion injury. Am. J. Physiol. 274, F587-595
108.Daemen, M. A., van 't Veer, C., Denecker, G., Heemskerk, V. H., Wolfs, T. G., Clauss, M., Vandenabeele, P., and Buurman, W. A. (1999) Inhibition of apoptosis induced by ischemia-reperfusion prevents inflammation. J. Clin. Invest. 104, 541-549
109.Singbartl, K., Green, S. A., and Ley, K. (2000) Blocking P-selectin protects from ischemia/reperfusion-induced acute renal failure. FASEB J. 14, 48-54
110.Patel, N. S., Chatterjee, P. K., Di Paola, R., Mazzon, E., Britti, D., De Sarro, A., Cuzzocrea, S., and Thiemermann, C. (2005) Endogenous interleukin-6 enhances the renal injury, dysfunction, and inflammation caused by ischemia/reperfusion. J. Pharmacol. Exp. Ther. 312, 1170-1178
111.Yaoita, H., Ogawa, K., Maehara, K., and Maruyama, Y. (1998) Attenuation of ischemia/reperfusion injury in rats by a caspase inhibitor. Circulation 97, 276-281
112.Lefer, D. J., Flynn, D. M., and Buda, A. J. (1996) Effects of a monoclonal antibody directed against P-selectin after myocardial ischemia and reperfusion. Am. J. Physiol. 270, H88-98
113.Cheng, Y., Deshmukh, M., D'Costa, A., Demaro, J. A., Gidday, J. M., Shah, A., Sun, Y., Jacquin, M. F., Johnson, E. M., and Holtzman, D. M. (1998) Caspase inhibitor affords neuroprotection with delayed administration in a rat model of neonatal hypoxic-ischemic brain injury. J. Clin. Invest. 101, 1992-1999
114.Goussev, A. V., Zhang, Z., Anderson, D. C., and Chopp, M. (1998) P-selectin antibody reduces hemorrhage and infarct volume resulting from MCA occlusion in the rat. J. Neurol. Sci. 161, 16-22
115.Yang, R., Han, X., Uchiyama, T., Watkins, S. K., Yaguchi, A., Delude, R. L., and Fink, M. P. (2003) IL-6 is essential for development of gut barrier dysfunction after hemorrhagic shock and resuscitation in mice. Am J Physiol Gastrointest Liver Physiol 285, G621-629
116.Singh, I., Zibari, G. B., Zizzi, H., Granger, D. N., Cruz, L., Gonsales, E., McDonald, J. C., and Brown, M. F. (1998) Anti-P-selectin antibody protects against hepatic ichemia-reperfusion injury. Transplant. Proc. 30, 2324-2326
117.Guo, J. K., and Cantley, L. G. (2010) Cellular maintenance and repair of the kidney. Annu. Rev. Physiol. 72, 357-376
118.Nony, P. A., and Schnellmann, R. G. (2003) Mechanisms of renal cell repair and regeneration after acute renal failure. J. Pharmacol. Exp. Ther. 304, 905-912
119.Sarrazin, S., Lamanna, W. C., and Esko, J. D. (2011) Heparan sulfate proteoglycans. Cold Spring Harb Perspect Biol 3
120.Mali, P., Yang, L., Esvelt, K. M., Aach, J., Guell, M., DiCarlo, J. E., Norville, J. E., and Church, G. M. (2013) RNA-guided human genome engineering via Cas9. Science 339, 823-826
121.Cong, L., Ran, F. A., Cox, D., Lin, S., Barretto, R., Habib, N., Hsu, P. D., Wu, X., Jiang, W., Marraffini, L. A., and Zhang, F. (2013) Multiplex genome engineering using CRISPR/Cas systems. Science 339, 819-823
122.Nemudryi, A. A., Valetdinova, K. R., Medvedev, S. P., and Zakian, S. M. (2014) TALEN and CRISPR/Cas Genome Editing Systems: Tools of Discovery. Acta Naturae 6, 19-40
123.Hong, C.-Y., Wu, C. C., Chiu, Y. C., Yang, S. Y., Horng, H. E., and Yang, H. C. (2006) Magnetic susceptibility reduction method for magnetically labeled immunoassay. Appl Phys Lett 88, 212512-212514

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top