跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.42) 您好!臺灣時間:2025/10/01 12:48
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:魏宇德
研究生(外文):Yu-te wei
論文名稱:文字探勘技術應用於自動化知識管理經驗學習系統之研究
論文名稱(外文):Application of Text Mining to Automatic Lesson-Learned File Generator for a Knowledge Management System
指導教授:余文德余文德引用關係
指導教授(外文):Wen-der yu
學位類別:碩士
校院名稱:中華大學
系所名稱:營建管理研究所
學門:商業及管理學門
學類:其他商業及管理學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
中文關鍵詞:文字探勘經驗學習語料庫知識管理
外文關鍵詞:Text mininglessons-learnedcorpusknowledge management
相關次數:
  • 被引用被引用:6
  • 點閱點閱:875
  • 評分評分:
  • 下載下載:240
  • 收藏至我的研究室書目清單書目收藏:3
經驗學習檔案常被營建業用來保留過去所累積之經驗與知識,以做為未來專案之用。傳統經驗學習檔案之建立方式倚賴具經驗之工程師或專案經理以人工撰寫之方式,此種人工填寫方式不但耗費心力,且許多營建工程知識常隱含在施工日報、計畫書、竣工報告、規範等工程文件中。欲以人工方式由上述文件中建立經驗學習檔案,確有其困難。文字探勘在自動化資料處理領域成功應用於其他領域之文件摘要處理,若能將此一技術引入營建業經驗學習檔案之建立,對於營建業知識管理之發展與技術經驗之累積將有突破性之助益。本研究參酌美國CII 之經驗學習檔案格式,並以文字探勘技術中之「摘要技術」為基礎,建立經驗學習檔案格式樣版。雖然本研究之成果尚屬實驗性質,文字探勘技術應用在自動建立經驗學習檔案上具有大幅提升經驗學習效率之潛在效益,值得學術與產業界進一步發展。
Lessons-learned file (LLF) is commonly adopted to retain previous knowledge and experiences for future use in many construction organizations. Current practice in capturing LLF is mainly through the costly and time-consuming manual processes conducted by the construction engineers or managers. Moreover, many construction knowledge accumulated from previous projects is berried in the construction documents such as construction journals, proposals, as-built drawings, SPECs, plans, etc. It is impossible to develop LLFs from these documents manually. Text mining (TM) techniques have been successfully applied to document summarization in many areas. It is promising to adopt TM techniques for automatic lesson-learned file generation in construction. This research is a preliminary attempt to develop an Automatic Lessons-Learned File Generator (ALLFG) based on text mining techniques and the lesson-learned file template of CII. A prototype system is programmed. Case study is conducted to extract meaningful LLF from sample Chinese construction document automatically. Although the results are still experimental, promising potentials can be envisioned for practical applications.
第一章 緒論
1.1 研究動機
1.2 研究課題
1.3 研究目的
1.4 研究範圍
1.5 研究方法
1.6 研究流程
第二章 文獻回顧
2.1 知識管理
2.1.1 知識之定義
2.1.2知識管理系統定義
2.1.3 知識管理系統之類型與功能
2.1.4 知識活動分類
2.2 經驗學習
2.2.1 經驗學習之定義
2.2.2 經驗學習相關系統
2.2.3 經驗學習系統概念
2.2.4 CII於經驗學習之研究
2.2.5 LL系統相關研究
2.3 小結
第三章 資料探勘技術
3.1 摘要之類型
3.2文字探勘
3.3 資訊檢索
3.3.1 資訊檢索簡介
3.3.2 資訊檢索相關技術簡介
3.4 以語料庫為基礎的文件摘要方法
3.5 以文件關聯為基礎的文件摘要方法
3.6 以潛在語意為基礎的文件摘要技術
3.7 近年相關研究
3.8 小結
第四章 自動化經驗學習演算法之規劃
4.1 演算法規劃
4.2 案例說明
4.2.1 案例之背景
4.2.2 手動計算範例
4.3 小結
第五章 系統開發
5.1 研究工具
5.2 功能元件
5.3 系統展示
第六章 結果驗證與比較
6.1 實驗設計
6.2 測試資料
6.3 向量空間模型參數測試分析
6.4 系統專家信度驗證
6.4.1驗證結果說明
6.4.2 不符案例之原因探討
第七章 結論與建議
7.1 結論
7.2 建議
參考文獻
附錄一 實驗設計結果
附錄二 案例處理結果
1.呂聯發,「知識管理、組織學習與資訊技術對知識管理績效之關連性研究」,碩士論文,淡江大學會
計學系,臺北,2001。
2.Ikujiro, N., and Hirotaka, T.,「創新求勝—智價企業論」,楊子江、王美音譯,李仁芳審定
導讀,遠流出版,1997
3.Maryam, A., and Dorothy, E. L., “Review: Knowledge Management and Knowledge
Management Systems: Conceptual Foundations and Research
Issues”, MIS Quarterly, Vol. 25, No. 1, pp. 107-136, Mar., 2001.
4.Mohammed, Q., and Jun, X., “Adoption and diffusion of knowledge management
systems: field studies of factors and variables”, Knowledge-Based Systems,
Vol.18, pp. 107-125, 2005.
5.Hind, B., Nassim, A. B., “Mechanisms for Knowledge Management
SystemsEffectiveness: An Exploratory Analysis,” Knowledge and Process
Management, Vol. 12, No. 3, 2005, pp. 203-216.
6.葉乃嘉,「知識管理」,全華科技,2004。
7.Michael, P., Tacit Dimension, Peter Smith Publisher Inc, June 1983.
8.Ikujiro, N., “”The Knowledge_Creation Company”, Harvard Business
Review, 96-104, 1991.
9.Rosina, W., David, W. A., Irma, B. F., “Intelligent Lessons Learned
Systems”, International Journal of Expert Systems, 2001.
10.Yu, W. D., and Skibniewski, M. J., “Quantitative constructability analysis
with a neuro-fuzzy knowledge-based multi-criterion decision support
system” Journal of Automation in Construction, Vol. 8, No. 5, pp.553-565,
1999.
11.Skibniewski, M., Arciszewski, T., and Lueprasert, K., “Constructability
analysis: Machine learning approach,”Journal of Computing in Civil
Engineering, ASCE, Vol. 11, No. 1, pp. 8-16, 1997.
12.McCullouch, B., and Patty, B., “Hypermedia constructability system”
Proceedings Computing in Civil Engineering, ASCE, New York, USA., no 2, pp.
1397-1404, 1994.
13.Kartam, N., and Flood, I., “Constructability feedback systems: Issues and
illustrative prototype, ” Journal of Performance of Constructed Facilities,
ASCE, Vol. 11, No. 4, pp. 178-183, 1997.
14.Kartam, N., “Knowledge-intensive database system for making effective use
of construction lesson learned” Proceedings Computing in Civil Engineering,
ASCE, New York, NY, USA., no. 2, pp. 1139-1145, 1994.
15.Loss, J., “AEPIC project: update” Journal of Performance of Constructed
Facilities, ASCE, Vol. 1, No. 1, pp. 11-29, 1987.
16.Deborah, F., Shrinand, D., and Jennifer, L., Modeling the Lessons Learned
Process, The University of New Mexico, Jun 1998.
17.LLP-Wizard, Construction Industry Institute, CII.
18.曾敬峰,呂守陞,「文字探勘技術在營建管理應用之探討」,碩士論文,台灣科技大學營建工程系,
臺北,2006。
19.陳光華,「Text Mining 工具的使用、原理與實務應用」,圖書館遠距教學,國立台灣大學圖書資
訊學系,臺北。
20.Arunmk, M., “Data Mining”, http://www.rpi.edu/~arunmk/, 2004.
21.陳光華,「Automatic Abstracting」,圖書館遠距教學,台灣大學圖書資訊學系,臺北。
22.Rush, J. E., R. Salvador and A. Zamora, “Automatic abstracting and
indexing. II. Production of indicative abstracts by application of contextual
inference and syntactic coherence criteria”, Journal of the American Society
for Information Science, Vol. 22, No. 3, pp. 260-274, 1971.
23.Fayyad, U., Piatetsky-Shapiro, G. and Smyth, P., “From Data Mining to
Knowledge Discovery in Databases”, AI Magazine, pp. 37-54, 1996.
24.Brachman, R.J., Khabaza, T., Kloesgen, W., Piatetsky-Shapiro, G. and
Simoudis, E., “Mining Business Databases”, Communication of the ACM,
vol. 39, no. 11, pp.42-48, 1996.
25.Han, J., and Kamber, M., Data mining: concepts and techniques, Morgan
Kaufmann, August 2000.
26.Dörre, J., P. Gerstl and Seiffert R., (1999): “Text Mining: Finding Nuggets
in Mountains of Textual Data”, Fifth ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining (KDD 1999).
27.曾元顯,「資訊檢索與資料探勘」,輔仁大學圖書資訊學系,臺北2004。
28.IBM, “Intelligent Miner for Text: Getting Started”, IBM Corp, 1998.
29.李建志,「應用混合式機率模型於新聞資訊檢索之研究」,國立成功大學資訊工程學系研究所,碩士
論文,台南,2002。
30.詹權恩,「以詞彙關聯性詞庫為基礎之文件關鍵字擷取模式」,國立清華大學工業工程與工程管理學
系,碩士論文,新竹,2004。
31.Luhn, H. P., “The Automatic Creation of Literature Abstracts,” IBM Journal
of Research and Development, pp.159-165, 1958.
32.Kupiec, J., J. Pedersen, and Chen F., “A Trainable Document Summarizer”,
Proceedings of the 18th annual international ACM SIGIR Conference on Research
and Development in Information Retrieval, pp. 68-73, 1995.
33.Salton, G., A. Singhal, Mitra, M., and Buckley C., “Automatic Text
Structuring and Summarization,” In Information Processing & Management,
Elsevier, Vol. 33, No. 2, pp. 193-207, 1997.
34.林千翔,張嘉惠,「基於特製隱藏式馬可夫模型之中文斷詞研究」,國科會計畫輔助NSC94-2213-
E-008-020。
35.黃純敏,楊存一,邱立豐,「TFIDF 觀念於自動摘要實作評估」,國立雲林科技大學 資訊管理研究
所,雲林。
36.Kim, J. H., and Hwang, D., “Korean Text Summarization Using an Aggregate
Similarity,” In Processings of the 5th International Workshop Information
Retrieval with Asian Languages, ACM, 2000.
37.Landauer, T. K., Foltz, P. W., and Laham, D., “An Introduction to Latent
Semantic Analysis,” In Discourse Processes, Vol. 25, pp. 259-284, 1998.
38.黃純敏,「多語文(中英文)超文件自動摘要與評估」,國科會專題研究計畫成果報告(NSC 89-
2416-H-224-053),雲林科技大學資訊管理系,雲林,2001。
39.Salton, G., A. Wang, C. S. Yang, “A Vector Space Model for Automatic
Indexing”, Communications of the ACM, Vol. 11, pp. 613-620, 1975.
40.Salton, G. and M.J. McGill, Introduction to Modern Information Retrieval,
New York: McGraw-Hill Co., 1983.
41.Wu, J. J., Wei, C. C., & Judy, J. C. R. “Development of an Enhanced Web-
based Automatic Customer Service System“. Internal Conference on Enterprise
Systems and Applications (ICESA). 2007.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊