跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.215) 您好!臺灣時間:2025/11/26 09:16
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:Yaswanth Kuthati
研究生(外文):Yaswanth Kuthati
論文名稱:官能化中孔洞二氧化矽奈米粒子作為刺激應答型藥物釋放與抗菌光動力治療
論文名稱(外文):FUNCTIONALIZED MESOPOROUS SILICA NANOPARTICLES FOR STIMULI RESPONSIVE DRUG RELEASE & ANTIMICROBIAL PHOTODYNAMIC THERAPY
指導教授:李佳洪
指導教授(外文):Chia-Hung Lee
學位類別:博士
校院名稱:國立東華大學
系所名稱:生命科學系
學門:生命科學學門
學類:生物學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
論文頁數:160
中文關鍵詞:NanomaterialsAntibacterial Photodynamic therapyControlled Drug ReleasepH Sensitive Drug DeliveryMesoporous Silica Nanoparticles
外文關鍵詞:NanomaterialsAntimicrobial Photodynamic therapyControlled Drug ReleasepH Sensitive Drug DeliveryMesoporous Silica Nanoparticles
相關次數:
  • 被引用被引用:0
  • 點閱點閱:80
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
Functional silica-based nanomaterials have recently received much attention due to their unique physiochemical properties. Studies on functionalized mesoporous silica nanoparticle (MSN) for various applications in the field of biomedicine have seen a significant increase, with an ultimate goal to extend these functionalized nanomaterials for therapeutic and diagnostic applications. Herein, the synthesis and characterization of MSN-based nanomaterials for stimuli responsive drug delivery and phototherapeutic applications are described.
First the study was focused on devising a functional pH responsive drug delivery system for the controlled release of silver, a widely used antibacterial agent. The nanoparticles (NPs) were immobilized with silver-indole-3 acetic acid hydrazide (IAAH-Ag) complexes via a pH-sensitive hydrazone bond via surface silanol groups. When the transitional metal complexes with IBN-4-IAAH-Ag were exposed to acidic pH (near pH 5.0), the silver ions were preferentially released (70%) in a controlled manner up to 12 hours by pH sensitive denial of hydrazone bonds. In contrary a low drug release (about 25%) was seen in physiological buffer (pH 7.4) demonstrating the pH sensitive release of this drug. This result is advantageous for selective release of drugs at bacterial sites, as most disease foci have lower extracellular pH than the healthy tissues.
Then photo responsive MSNs are developed in order to investigate the possibilities of using mesoporous nanomaterials as carriers for photo-triggered drug activation. The immobilization of curcumin-metal complexes inside the mesoporous silicate framework was extensively evaluated by monitoring the ability of diamine functionalized mesoporous silica nanomaterials to adsorb and deliver phototherapeutics. The ability of Vanadium metal in potentiating the activity of spice curcumin against bacteria and cells is investigated.
IBN-4 nanoparticles loaded with photoactivable Vanadium curcumin [VO (cur) (dppz) Cl)] metal complex was prepared and tested for their photodynamic therapy efficacy on planktonic cells and biofilms of S.aureus.
Finally, Copper substituted Mesoporous silicates were synthesized with Curcumin adsorbed inside the pores in combination with silver nanoparticles decorated to the exterior surface show a strong Photodynamic inactivation (PDI) of antibiotic-resistant E.coli, significantly much higher than that expected from the combination of the independent effects of both phototherapeutics. We demonstrated that silver is capable of sensitizing Gram-negative bacteria E.coli to the Gram-positive specific phototherapeutic agent, curcumin thereby expanding the phototherapeutic spectrum of this drug. Under light irradiation curcumin produced reactive oxygen which directly affected the release of silver ions from the surface decorated silver nanoparticles. Additionally silver nanoparticles were shown to improve antimicrobial response by imparting a positive charge on the nanoparticle surface improving the electrostatic attractions towards bacterial membranes. The antibacterial action of the synthesized materials is activated through various mechanisms, including, the transmission of the excited state from curcumin to silver, the synergistic effect of reactive oxygen species (ROS) along with the coexisting copper and silver ions. In dark conditions, nanoparticles exhibited very low antimicrobial response. However, up on light irradiation, they showed a strong antibacterial effects. Thus the employed synergistic strategy can significantly reduce the dosage of silver, copper and curcumin necessary to treat gram negative bacterial diseases there by reducing the cytotoxic effects of metal ions on human cells and also preventing the chances multi-drug resistance in bacterial cells.

Functional silica-based nanomaterials have recently received much attention due to their unique physiochemical properties. Studies on functionalized mesoporous silica nanoparticle (MSN) for various applications in the field of biomedicine have seen a significant increase, with an ultimate goal to extend these functionalized nanomaterials for therapeutic and diagnostic applications. Herein, the synthesis and characterization of MSN-based nanomaterials for stimuli responsive drug delivery and phototherapeutic applications are described.
First the study was focused on devising a functional pH responsive drug delivery system for the controlled release of silver, a widely used antibacterial agent. The nanoparticles (NPs) were immobilized with silver-indole-3 acetic acid hydrazide (IAAH-Ag) complexes via a pH-sensitive hydrazone bond via surface silanol groups. When the transitional metal complexes with IBN-4-IAAH-Ag were exposed to acidic pH (near pH 5.0), the silver ions were preferentially released (70%) in a controlled manner up to 12 hours by pH sensitive denial of hydrazone bonds. In contrary a low drug release (about 25%) was seen in physiological buffer (pH 7.4) demonstrating the pH sensitive release of this drug. This result is advantageous for selective release of drugs at bacterial sites, as most disease foci have lower extracellular pH than the healthy tissues.
Then photo responsive MSNs are developed in order to investigate the possibilities of using mesoporous nanomaterials as carriers for photo-triggered drug activation. The immobilization of curcumin-metal complexes inside the mesoporous silicate framework was extensively evaluated by monitoring the ability of diamine functionalized mesoporous silica nanomaterials to adsorb and deliver phototherapeutics. The ability of Vanadium metal in potentiating the activity of spice curcumin against bacteria and cells is investigated.
IBN-4 nanoparticles loaded with photoactivable Vanadium curcumin [VO (cur) (dppz) Cl)] metal complex was prepared and tested for their photodynamic therapy efficacy on planktonic cells and biofilms of S.aureus.
Finally, Copper substituted Mesoporous silicates were synthesized with Curcumin adsorbed inside the pores in combination with silver nanoparticles decorated to the exterior surface show a strong Photodynamic inactivation (PDI) of antibiotic-resistant E.coli, significantly much higher than that expected from the combination of the independent effects of both phototherapeutics. We demonstrated that silver is capable of sensitizing Gram-negative bacteria E.coli to the Gram-positive specific phototherapeutic agent, curcumin thereby expanding the phototherapeutic spectrum of this drug. Under light irradiation curcumin produced reactive oxygen which directly affected the release of silver ions from the surface decorated silver nanoparticles. Additionally silver nanoparticles were shown to improve antimicrobial response by imparting a positive charge on the nanoparticle surface improving the electrostatic attractions towards bacterial membranes. The antibacterial action of the synthesized materials is activated through various mechanisms, including, the transmission of the excited state from curcumin to silver, the synergistic effect of reactive oxygen species (ROS) along with the coexisting copper and silver ions. In dark conditions, nanoparticles exhibited very low antimicrobial response. However, up on light irradiation, they showed a strong antibacterial effects. Thus the employed synergistic strategy can significantly reduce the dosage of silver, copper and curcumin necessary to treat gram negative bacterial diseases there by reducing the cytotoxic effects of metal ions on human cells and also preventing the chances multi-drug resistance in bacterial cells.

Table of Contents
1. The emergence of antibiotic resistance & Importance of nanodrug delivery systems 1
1.1 Introduction to Mesoporous Silica Nanomaterials 1
1.1.1 Brief description of Mesoporous Silica Nanoparticles 2
1.1.2 Biological Applications of Mesoporous Silica Nanoparticles 6
1.2 References 12
2. pH Controlled Drug Release of Silver-Indole-3 Acetic Acid Complexes From Mesoporous Silica Nanoparticles (IBN-4) For Targeted Antibacterial Therapy 17
2.1 Abstract 18
2.2 Introduction 19
2.3 Experimental Section 26
2.3.1 Materials 26
2.3.2 Characterization 26
2.3.3 Synthesis Procedure 27
2.3.4 Biological activity Assessment 29
2.4 Results and Discussion 37
2.5 Conclusions 62
2.6 References 63
2.7 Appendixes 72
3. Synthesis, Characterization and Photoinduced Antibacterial activity of Vanadium-Curcumin Metal Complex loaded IBN-4 Nanoparticles 81
3.1 Abstract 81
3.2 Introduction 82
3.3 Experimental Section 86
3.3.1 Materials 86
3.3.2 Characterization 86
3.3.3 Synthesis Procedure: 87
3.3.4 Biological activity Assessment 89
3.4 Results and Discussion 93
3.5 Conclusions 107
3.6 References 108
4. Copper Substituted Mesoporous Silica Nanoparticles Decorated with Curcumin and Well Dispersed Silver Nanoparticles as a Three Component, Highly Efficient Photo Bacterial Agent 115
4.1 Abstract 115
4.2 Introduction 116
4.3 Experimental Section 121
4.3.1 Materials 121
4.3.2 Characterization 121
4.3.3 Synthesis Procedure 122
4.3.4 Biological activity Assessment 124
4.4 Results and Discussion 128
4.5 Conclusions 146
4.6 References 147
4.7 Appendixes 156
5. General Conclusions 159









Figure index
Fig 1. 1 A representation of organo-functionalized MSN by using one step co-condensation by employing sol-gel process. 4
Fig 1. 2 A representation of post-synthesis modification of MSN surfaces. 5
Fig 1. 3 Functionalization of mesoporous silica nanoparticles for biomedical applications 7
Fig 1. 4 Representation of Cu–MSN–AT framework and mechanistic illustration of delivery in a cancer cell environment 8
Fig 1. 5 Schematic representation of enzyme prodrug therapy using IBN-4-HRP nanocomposites in the presence of indole-3-acetic acid and the resultant cell apoptosis (1. skatolyl radical and 2. peroxyl radical). 9
Fig 1. 6 Schematic representation of MSNS⊂VAN for selective recognition and killing pathogenic gram-positive bacteria over macrophage-like cells. 10
Fig 1. 7 (A) Design: The drug is entrapped within the mesoporous silica particle, protected by a lipid coating. (B) Delivery: Particle system is robust for oral delivery for treatment of salmonella (STM) infection. (C) Mechanism: The particle enters into the infected gastrointestinal cell and releases the antibiotic cargo to eliminate the pathogen. 10
Fig 1. 8 (A) Synthesis of aldehyde-functionalized msns, yielding msn – cho (leftmost reaction); attachment of isoniazid (INH) onto the surface of the aldehyde-modified nanoparticles, yielding MSN– CHO –INH (middle reaction); and release of the INH from MSN – CHO – INH by hydrolysis at acid pH (rightmost reaction). (B) Assembly of copolymer PEI–PEG on the pH-responsive INH-loaded msns, yielding MSN –CHO – INH – PEIi–PEG. 11
Fig 2.1 Schematic illustration of method for the synthesis of hydrazone bond based pH-responsive drug delivery system. The IBN-4 particles were selectively functionalized with aldehyde groups on the mesopore surface via post-synthesis method. The coordination bond based Ald-Hydrazide-Ag architecture can be easily formed. Ag can be released under mildly acidic pH conditions by the cleavage of either side of the Aldehyde-Hydrazide or Hydrazide–Ag coordination bond by pH reduction. 22
Fig 2.2 Percentage of drug release as a function of time, for IBN-4-IAAH-Ag nanocomposites at different pH. The same mass of silver is used in each sample. 41
Fig 2.3 FT-IR spectra of (a) IBN-4 particles after calcination (b) IBN-4 particles modified with aldehyde groups, (c) the IBN-4-aldehyde sample after formation of hydrazone bond (d) Silver conjugated IBN-4 nanoparticles. 42
Fig 2.4 Nitrogen adsorption–desorption isotherms of (a) IBN-4, (b) IBN-4-ald, (c) IBN-4-IAAH, (d) IBN-4-IAAH-Ag (e) IBN-4 nanoparticles after drug release. Corresponding surface area and pore size. 43
Fig 2. 5 TGA weight loss curves of (a) IBN-4, (b) IBN-4-ald, (c) IBN-4-IAAH and (d) IBN-4-IAAH-Ag complexes. 45
Fig 2. 6 Effect of nanoparticles on bacterial growth with various individual and drug loaded nanoconjugates of IBN-4-IAAH-Ag nps at various concentrations. 48
Fig 2. 7 Petri dishes with lb-agar inoculated with lb-agar inoculated with drug resistant strains of a) S. aureus and b) E. coli, showing variable number of colonies when supplemented with differents amounts of nanoparticles. 49
Fig 2. 8 Intracellular ros levels measured using fluorescent probe H2DCF-DA for bacterial cells (B. subtilis and E. coli) treated with nanoparticles at 50 μg/mL for 3 h.. 53
Fig 2. 9 Effect of IBN-4 nanoparticles on the inhibition of biofilm formation at different drug concentrations against drug resistant strains of E. coli, B. subtilis, S. aureus, and S. epidermis). .55
Fig 2. 10 Effect of IBN-4 nanoparticles in inhibiting the activity of matured biofilms treated with different drug concentrations against drug resistant strains of E. coli, B. subtilis, S. aureus and S. epidermidis determined through MTT cell viability assay… 56
Fig 2. 11 Fluorescence micrograph of (a,c) control S. aureus cells of the biofilm and (b,d) biofilms treated with 30 μg/ml of nanoparticles. (a, b) magnification of control cells at 60x and (c, d) magnification of drug treated cells at 10x. Biofilm were stained with fluorescein isothiocyanate (FITC) and propidium iodide (PI) dyes: green fluorescence is characteristic of the live cells, whereas red fluorescence is due to dead cells. 59
Fig 2. 12 Representative fe-sem images of E. coli. (a) and S. aureus (c) without nanoparticle treatment; (b) and (d) images of E. coli and S. aureus treated by a 30 μg/ml concentration of IBN-4-IAAH-Ag nanocomposites. 60
Fig 2. 13 Kill curves of E.coli within the peritoneal cavity of mice after no treatment or treatment with bare IBN-4 (10 mg/kg), IBN-4-IAAH-Ag (0.5 mg/kg) and IBN-4-IAAH-Ag nps (2.0 mg/kg). 60
Fig 3. 1 The TEM images of (a) Calcined IBN-4 nanoparticles 100 nm (b) IBN-4-V-curcumin (200 nm), and (d) IBN-4-V-curcumin (50 nm). 94
Fig 3. 2 (a) FT-IR spectra of (a) IBN-4 particles after calcination (b) IBN-4 particles modified with diamine groups, (c) Pure curcumin vanadium complex (d) IBN-4-curcumin-vanadium complex. (b) EPR spectra of vanadium-curcumin immobilized in IBN-4 95
Fig 3. 3 (A) Nitrogen adsorption–desorption isotherms of (a) IBN-4, (b) IBN-4-diamine, (c) IBN-4-V-Cur corresponding surface area and pore size. (B) Photographic image of curcumin metal complex loading onto the IBN-4 nanoparticles (a) Template extracted IBN-4 nanoparticles (b) Vanadium metal ion loaded IBN-4 nanoparticles (c) Dppz loaded on to the surface of metal ion loaded IBN-4 nanoparticles (d) Conjugation of curcumin on to the metal Dppz modified IBN nanoparticles 96
Fig 3. 4 (A) Uv-visible spectra of (a) Curcumin (434) (b) Curcumin vanadium complex (256, 440) and (c) IBN-4 adsorbed curcumin vanadium complex. (273,382,460) in 70% aq. Ethanol. (B) TGA thermograms of (a) IBN-4, (b) IBN-4-diamine, (c) IBN-4 diamine-vanadium (d) IBN-4 diamine-vanadium Dppz and (e) IBN4-diamine-vandium curcumin complex. 98
Fig 3. 5 Instability of free curcumin from plots showing the time dependence of the absorbance of (a) curcumin and (b) vanadium curcumin complex immobilized IBN-4. 100
Fig 3. 6 Mean values of cfu/mL for all experimental conditions and reduction (%) in the number of viable cells for experimental groups compared to dark control group. (+): samples treated with led; (-) samples in dark conditions. Statistical significance at 0.05 in comparison to control 101
Fig 3. 7 Membrane permeability of S.aureus was measured using flow cytometry with PI staining on treatment using various concentrations drug loaded nanoparticles (a) Without phototherapy and (b) With phototherapy, (a) 50 μg/mL (b) 10 μg/mL and (c) control (0 μg/mL). 102
Fig 3. 8 (A) The ROS level in s.aureus was analyzed using FCM with DCFH-DA staining after nanoparticle treatment and blue light irradiation (72 J/cm2). (a) Light control; (b) Dark control (c) IBN-4-vanadium-curcumin-dark; (d) IBN-4-vanadium-curcumin-light. (B) Singlet oxygen detection after light irradiation of IBN-v-cur samples using DPBF at various time points. 103
Fig 3. 9 (A) Flow-cytometric assessment of IBN-v-cur uptake in s.aureus (a) Control (b) 10 μg/mL (c) 50 μg/mL (B) Representative FE-SEM images of S.aureus (a) Dark control; (b) Light control (c) Treatment with 30 μg/mL concentration of IBN-v-cur nano composites in the absence of light and (d) Treatment with 30 μg/ml concentration of IBN-v-cur nano composites exposed to light irradiation. 104
Fig 3. 10 Confocal fluorescence micrograph of S.aureus biofilms (a) control in the presence of light (b) Treated with 25 μg/ml concentration of IBN-v-cur nano composites in the absence of light (c) Treated with 25 μg/ml concentration of IBN-v-cur nano composites and exposed to light irradiation. Biofilm were stained with fluorescein isothiocyanate (FITC) and propidium iodide (PI) dyes: green fluorescence is characteristic of the live cells, whereas red fluorescence is due to dead cells 105
Fig 3. 11 Flow cytometric analyses of cellular uptake of iIBN-v curcumin samples in HT-29 cells 106
Fig 3. 12 Drug uptake imaging of IBN-v-cur nanoparticles in HT29 cells after 4 hours of incubation (a) DAPI stained nucleus (b) Autofluorosence of curcumin (c) Merge of DAPI and curcumin treated samples 107
Fig 4. 1 (A) Schematic illustration of diamine modification, snp and curcumin loading in to cumsn. (B) TEM image of (a) SNP adsorbed in diamine modified cumsn with curcumin loading at 100nm. (b) SNP diameter distribution at 10 nm (c) Curcumin loaded cumsn at 50nm and (d) Curcumin and snp loaded cumsn at 1 µm. (e) SEM image of CuMSN at 1 µm and (f) SNP-CuMSN at 400nm. 129
Fig 4. 2 UV-visible spectra of (a) Curcumin (434nm) (b) CuMSN-Curcumin (425nm) (c) CuMSN-SNP (410nm) and (d) CuMSN-SNP-Curcumin (428nm). 130
Fig 4. 3 (A) FT-IR spectra of (a) Extracted cumsn (b) Diamine modified CuMSN (c) CuMSN-SNP (d) CuMSN-SNP-Curcumin (e) CuMSN-Curcumin (f) Curcumin (B) Nitrogen adsorption–desorption isotherms of (a) Diamine modified cumsn after template extraction (b) Curcumin loaded cumsn (c) SNP & Curcumin loaded CuMSN. 132
Fig 4. 4 EPR spectrum of solid (a) CuMSN and (b) CuMSN-Curcumin complex, (c) CuMSN-SNP (d) CuMSN-SNP-Curcumin at 77k. 135
Fig 4. 5 Optical images of (a) Extracted cumsn (b) Silver nitrate adsorbed cumsn (c) After reduction of silver nitrate to snp with formaldehyde (d) CuMSN-SNP-Curcumin (e) CuMSN-Curcumin 136
Fig 4. 6 13C cp/mas solid-state NMR spectra of (A) (a) Msn and (b) CuMSN (B) (a) Diamine modified CuMSN (b) SNP modified CuMSN and (c) SNP and Curcumin conjugated CuMSN 139
Fig 4. 7 Membrane permeability of E. coli was measured using flow cytometry with PI staining either in (A) Dark or (B) Light with (a) CuMSN (b) CuMSN-Curcumin (c) CuMSN-SNP and (d) CuMSN-SNP-Curcumin 142
Fig 4. 8 The ROS level in E. coli was analyzed using fcm with DCFH-DA staining after nanoparticle treatment (A) In dark and (B) With blue light irradiation (72 J/cm2). (a) control; (b) CuMSN curcumin (c) CuMSN-SNP (d) CuMSN-SNP- Curcumin 142
Fig 4. 9 Viability of E. coli in the absence or presence of blue light. Bacteria were incubated with different concentrations of curcumin (1.5, 3 and 6
Chapter 1: 1.2 References

1. H. Maeda, Advances in enzyme regulation, 2001, 41, 189-207.
2. H. Maeda, G. Y. Bharate and J. Daruwalla, European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V, 2009, 71, 409-419.
3. R. Duncan, Nature reviews. Drug discovery, 2003, 2, 347-360.
4. E. A. Azzopardi, E. L. Ferguson and D. W. Thomas, Journal of Antimicrobial Chemotherapy, 2012, DOI: 10.1093/jac/dks379.
5. H. Maeda, Proceedings of the Japan Academy. Series B, Physical and biological sciences, 2012, 88, 53-71.
6. I. I. Slowing, J. L. Vivero-Escoto, C.-W. Wu and V. S. Y. Lin, Advanced Drug Delivery Reviews, 2008, 60, 1278-1288.
7. J. Gu, K. Huang, X. Zhu, Y. Li, J. Wei, W. Zhao, C. Liu and J. Shi, Journal of colloid and interface science, 2013, 407, 236-242.
8. I. I. Slowing, B. G. Trewyn, S. Giri and V. S. Y. Lin, Advanced Functional Materials, 2007, 17, 1225-1236.
9. J. L. Vivero-Escoto, I. I. Slowing, B. G. Trewyn and V. S. Y. Lin, Small (Weinheim an der Bergstrasse, Germany), 2010, 6, 1952-1967.
10. M. Manzano, V. Aina, C. O. Areán, F. Balas, V. Cauda, M. Colilla, M. R. Delgado and M. Vallet-Regí, Chemical Engineering Journal, 2008, 137, 30-37.
11. M. N. Seleem, P. Munusamy, A. Ranjan, H. Alqublan, G. Pickrell and N. Sriranganathan, Antimicrobial agents and chemotherapy, 2009, 53, 4270-4274.
12. B. J. Edagwa, D. Guo, P. Puligujja, H. Chen, J. McMillan, X. Liu, H. E. Gendelman and P. Narayanasamy, FASEB journal : official publication of the Federation of American Societies for Experimental Biology, 2014, 28, 5071-5082.
13. D. L. Clemens, B. Y. Lee, M. Xue, C. R. Thomas, H. Meng, D. Ferris, A. E. Nel, J. I. Zink and M. A. Horwitz, Antimicrobial agents and chemotherapy, 2012, 56, 2535-2545.
14. K. Horvati, B. Bacsa, E. Kiss, G. Gyulai, K. Fodor, G. Balka, M. Rusvai, E. Szabo, F. Hudecz and S. Bosze, Bioconjugate chemistry, 2014, 25, 2260-2268.
15. B. G. Trewyn, S. Giri, I. I. Slowing and V. S. Y. Lin, Chemical Communications, 2007, DOI: 10.1039/B701744H, 3236-3245.
16. H. Yamada, C. Urata, H. Ujiie, Y. Yamauchi and K. Kuroda, Nanoscale, 2013, 5, 6145-6153.
17. M. Colilla, F. Balas, M. Manzano and M. Vallet-Regí, Solid State Sciences, 2008, 10, 408-415.
18. M. Yu, L. Zhou, J. Zhang, P. Yuan, P. Thorn, W. Gu and C. Yu, Journal of colloid and interface science, 2012, 376, 67-75.
19. Z. Li, J. C. Barnes, A. Bosoy, J. F. Stoddart and J. I. Zink, Chemical Society Reviews, 2012, 41, 2590-2605.
20. L. F. Giraldo, B. L. López, L. Pérez, S. Urrego, L. Sierra and M. Mesa, Macromolecular Symposia, 2007, 258, 129-141.
21. I. I. Slowing, J. L. Vivero-Escoto, C.-W. Wu and V. S. Y. Lin, Advanced Drug Delivery Reviews, 2008, 60, 1278-1288.
22. F. Tang, L. Li and D. Chen. Advanced Materials, 24, 1504-34.
23. Y. Kuthati, P. J. Sung, C. F. Weng, C. Y. Mou and C. H. Lee, Journal of nanoscience and nanotechnology, 2013, 13, 2399-2430.
24. L. Y. T. Chou, K. Ming and W. C. W. Chan, Chemical Society Reviews, 2011, 40, 233-245.
25. C.-H. Lee, T.-S. Lin and C.-Y. Mou, Nano Today, 2009, 4, 165-179.
26. P. Yang, S. Gai and J. Lin, Chemical Society Reviews, 2012, 41, 3679-3698.
27. N. Lang and A. Tuel, Chemistry of Materials, 2004, 16, 1961-1966.
28. H. Cai and D. Zhao, Microporous and Mesoporous Materials, 2009, 118, 513-517.
29. C.-H. Lin, S.-H. Cheng, W.-N. Liao, P.-R. Wei, P.-J. Sung, C.-F. Weng and C.-H. Lee, International Journal of Pharmaceutics, 2012, 429, 138-147.
30. C.-H. Lee, S.-H. Cheng, I. P. Huang, J. S. Souris, C.-S. Yang, C.-Y. Mou and L.-W. Lo, Angewandte Chemie International Edition, 2010, 49, 8214-8219.
31. K. M. L. Taylor-Pashow, J. Della Rocca, R. C. Huxford and W. Lin, Chemical Communications, 2010, 46, 5832-5849.
32. S.-H. Cheng, C.-H. Lee, M.-C. Chen, J. S. Souris, F.-G. Tseng, C.-S. Yang, C.-Y. Mou, C.-T. Chen and L.-W. Lo, Journal of Materials Chemistry, 2010, 20, 6149-6157.
33. R. K. Kankala, Y. Kuthati, C.-L. Liu, C.-Y. Mou and C.-H. Lee, RSC Advances, 2015, 5, 86072-86081.
34. X. Hu, X. Hao, Y. Wu, J. Zhang, X. Zhang, P. C. Wang, G. Zou and X. J. Liang, Journal of materials chemistry. B, Materials for biology and medicine, 2013, 1, 1109-1118.
35. J. Lu, E. Choi, F. Tamanoi and J. I. Zink, Small (Weinheim an der Bergstrasse, Germany), 2008, 4, 421-426.
36. N. Z. Knezevic, E. Ruiz-Hernandez, W. E. Hennink and M. Vallet-Regi, RSC Advances, 2013, 3, 9584-9593.
37. X. Li, T. Tang, Y. Zhou, Y. Zhang and Y. Sun, Microporous and Mesoporous Materials, 2014, 184, 83-89.
38. B.-Y. Hung, Y. Kuthati, R. Kankala, S. Kankala, J.-P. Deng, C.-L. Liu and C.-H. Lee, Nanomaterials, 2015, 5, 2169.
39. G. Qi, L. Li, F. Yu and H. Wang, ACS Applied Materials & Interfaces, 2013, 5, 10874-10881.
40. R. J. Mudakavi, A. M. Raichur and D. Chakravortty, RSC Advances, 2014, 4, 61160-61166.
41. Angela A. Hwang , Bai-Yu Lee , Daniel L. Clemens , Barbara Jane Dillon , Jeffrey I. Zink , and Marcus A. Horwitz, Small, 2015,11, 5066-5078.


Chapter 2.
1. Maeda H, Journal of controlled release, 2012, 164, 138-144.
2. A. Giedraitiene, A. Vitkauskiene, R. Naginiene and A. Pavilonis, Medicina (Kaunas, Lithuania), 2011, 47, 137-146.
3. D. I. Andersson and D. Hughes, FEMS Microbiology Reviews, 2011, 35, 901-911.
4. H. Maeda, Advances in enzyme regulation, 2001, 41, 189-207.
5. H. Maeda, G. Y. Bharate and J. Daruwalla, European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V, 2009, 71, 409-419.
6. R. Duncan, Nature reviews. Drug discovery, 2003, 2, 347-360.
7. E. A. Azzopardi, E. L. Ferguson and D. W. Thomas, Journal of Antimicrobial Chemotherapy, 2012, 68, 257-274..
8. H. Maeda, Proceedings of the Japan Academy. Series B, Physical and biological sciences, 2012, 88, 53-71.
9. I. I. Slowing, J. L. Vivero-Escoto, C.-W. Wu and V. S. Y. Lin, Advanced Drug Delivery Reviews, 2008, 60, 1278-1288.
10. J. Gu, K. Huang, X. Zhu, Y. Li, J. Wei, W. Zhao, C. Liu and J. Shi, Journal of colloid and interface science, 2013, 407, 236-242.
11. I. I. Slowing, B. G. Trewyn, S. Giri and V. S. Y. Lin, Advanced Functional Materials, 2007, 17, 1225-1236.
12. J. L. Vivero-Escoto, I. I. Slowing, B. G. Trewyn and V. S. Y. Lin, Small (Weinheim an der Bergstrasse, Germany), 2010, 6, 1952-1967.
13. M. Manzano, V. Aina, C. O. Areán, F. Balas, V. Cauda, M. Colilla, M. R. Delgado and M. Vallet-Regí, Chemical Engineering Journal, 2008, 137, 30-37.
14. M. N. Seleem, P. Munusamy, A. Ranjan, H. Alqublan, G. Pickrell and N. Sriranganathan, Antimicrobial agents and chemotherapy, 2009, 53, 4270-4274.
15. B. J. Edagwa, D. Guo, P. Puligujja, H. Chen, J. McMillan, X. Liu, H. E. Gendelman and P. Narayanasamy, FASEB journal : official publication of the Federation of American Societies for Experimental Biology, 2014, 28, 5071-5082.
16. D. L. Clemens, B. Y. Lee, M. Xue, C. R. Thomas, H. Meng, D. Ferris, A. E. Nel, J. I. Zink and M. A. Horwitz, Antimicrobial agents and chemotherapy, 2012, 56, 2535-2545.
17. K. Horvati, B. Bacsa, E. Kiss, G. Gyulai, K. Fodor, G. Balka, M. Rusvai, E. Szabo, F. Hudecz and S. Bosze, Bioconjugate chemistry, 2014, 25, 2260-2268.
18. H. Yamada, C. Urata, H. Ujiie, Y. Yamauchi and K. Kuroda, Nanoscale, 2013, 5, 6145-6153.
19. M. Colilla, F. Balas, M. Manzano and M. Vallet-Regí, Solid State Sciences, 2008, 10, 408-415.
20. M. Yu, L. Zhou, J. Zhang, P. Yuan, P. Thorn, W. Gu and C. Yu, Journal of colloid and interface science, 2012, 376, 67-75.
21. Z. Li, J. C. Barnes, A. Bosoy, J. F. Stoddart and J. I. Zink, Chemical Society Reviews, 2012, 41, 2590-2605.
22. L. F. Giraldo, B. L. López, L. Pérez, S. Urrego, L. Sierra and M. Mesa, Macromolecular Symposia, 2007, 258, 129-141.
23. I. I. Slowing, J. L. Vivero-Escoto, C.-W. Wu and V. S. Y. Lin, Advanced drug delivery reviews, 2008, 60, 1278-1288.
24. F. Tang, L. Li and D. Chen. Advanced Materials, 24, 1504-34.
25. Y. Kuthati, P. J. Sung, C. F. Weng, C. Y. Mou and C. H. Lee, Journal of nanoscience and nanotechnology, 2013, 13, 2399-2430.
26. R. Friedman, Journal of the National Cancer Institute, 2011, 103, 1428-1429.
27. J. Liu, R. Harrison, J. Z. Zhou, T. T. Liu, C. Yu, G. Q. Lu, S. Z. Qiao and Z. P. Xu, Journal of Materials Chemistry, 2011, 21, 10641-10644.
28. Y. Han and J. Y. Ying, Angewandte Chemie International Edition, 2005, 44, 288-292.
29. L. Zhang, Y. Li and J. C. Yu, Journal of Materials Chemistry B, 2014, 2, 452-470.
30. A. F. Radovic-Moreno, T. K. Lu, V. A. Puscasu, C. J. Yoon, R. Langer and O. C. Farokhzad, ACS Nano, 2012, 6, 4279-4287.
31. C. Barbé, J. Bartlett, L. Kong, K. Finnie, H. Q. Lin, M. Larkin, S. Calleja, A. Bush and G. Calleja, Advanced Materials, 2004, 16, 1959-1966.
32. Q. He, Z. Zhang, F. Gao, Y. Li and J. Shi, Small (Weinheim an der Bergstrasse, Germany), 2011, 7, 271-280.
33. C. Fu, T. Liu, L. Li, H. Liu, D. Chen and F. Tang, Biomaterials, 2013, 34, 2565-2575.
34. J. Lu, M. Liong, Z. Li, J. I. Zink and F. Tamanoi, Small (Weinheim an der Bergstrasse, Germany), 2010, 6, 1794-1805.
35. J. S. Souris, C. H. Lee, S. H. Cheng, C. T. Chen, C. S. Yang, J. A. Ho, C. Y. Mou and L. W. Lo, Biomaterials, 2010, 31, 5564-5574.
36. Y. Wang, Q. Zhao, N. Han, L. Bai, J. Li, J. Liu, E. Che, L. Hu, Q. Zhang, T. Jiang and S. Wang, Nanomedicine : nanotechnology, biology, and medicine, 2014, DOI: 10.1016/j.nano.2014.09.014.
37. X. Hu, X. Hao, Y. Wu, J. Zhang, X. Zhang, P. C. Wang, G. Zou and X. J. Liang, Journal of materials chemistry. B, Materials for biology and medicine, 2013, 1, 1109-1118.
38. J. Lu, E. Choi, F. Tamanoi and J. I. Zink, Small (Weinheim an der Bergstrasse, Germany), 2008, 4, 421-426.
39. C.-H. Lee, S.-H. Cheng, I. P. Huang, J. S. Souris, C.-S. Yang, C.-Y. Mou and L.-W. Lo, Angewandte Chemie International Edition, 2010, 49, 8214-8219.
40. N. Z. Knezevic, E. Ruiz-Hernandez, W. E. Hennink and M. Vallet-Regi, RSC Advances, 2013, 3, 9584-9593.
41. X. Li, T. Tang, Y. Zhou, Y. Zhang and Y. Sun, Microporous and Mesoporous Materials, 2014, 184, 83-89.
42. L. D. Handke, K. L. Rogers, M. E. Olson, G. A. Somerville, T. J. Jerrells, M. E. Rupp, P. M. Dunman and P. D. Fey, Infection and immunity, 2008, 76, 141-152.
43. S. Fuchs, J. Pané-Farré, C. Kohler, M. Hecker and S. Engelmann, Journal of bacteriology, 2007, 189, 4275-4289.
44. J. Fallingborg, L. A. Christensen, B. A. Jacobsen and S. N. Rasmussen, Digestive diseases and sciences, 1993, 38, 1989-1993.
45. A. C. Issekutz and S. Bhimji, Infection and immunity, 1982, 36, 558-566.
46. B. Bistrian, Nutrition reviews, 2007, 65, S170-172.
47. A. S. Trevani, G. Andonegui, M. Giordano, D. H. Lopez, R. Gamberale, F. Minucci and J. R. Geffner, Journal of immunology (Baltimore, Md. : 1950), 1999, 162, 4849-4857.
48. R. Dubos, The Lancet, 1955, 266, xxiv-5.
49. L. Marnell, C. Mold and T. W. Du Clos, Clinical immunology (Orlando, Fla.), 2005, 117, 104-111.
50. R. J. Coakley, C. Taggart, N. G. McElvaney and S. J. O'Neill, Blood, 2002, 100, 3383-3391.
51. A. Lardner, Journal of leukocyte biology, 2001, 69, 522-530.
52. H. P. Simmen and J. Blaser, American journal of surgery, 1993, 166, 24-27.
53. M. Vermeulen, M. Giordano, A. S. Trevani, C. Sedlik, R. Gamberale, P. Fernandez-Calotti, G. Salamone, S. Raiden, J. Sanjurjo and J. R. Geffner, Journal of immunology (Baltimore, Md. : 1950), 2004, 172, 3196-3204.
54. D. Pornpattananangkul, S. Olson, S. Aryal, M. Sartor, C.-M. Huang, K. Vecchio and L. Zhang, ACS Nano, 2010, 4, 1935-1942.
55. I. Zhuk, F. Jariwala, A. B. Attygalle, Y. Wu, M. R. Libera and S. A. Sukhishvili, ACS Nano, 2014, 8, 7733-7745.
56. S. Pavlukhina, Y. Lu, A. Patimetha, M. Libera and S. Sukhishvili, Biomacromolecules, 2010, 11, 3448-3456.
57. X. Xia, K. Pethe, R. Kim, L. Ballell, D. Barros, J. Cechetto, H. Jeon, K. Kim and A. Garcia-Bennett, Nanomaterials, 2014, 4, 813-826.
58. D. Yang, D. Pornpattananangkul, T. Nakatsuji, M. Chan, D. Carson, C. M. Huang and L. Zhang, Biomaterials, 2009, 30, 6035-6040.
59. L. Pichavant, G. Amador, C. Jacqueline, B. Brouillaud, V. Héroguez and M.-C. Durrieu, Journal of Controlled Release, 2012, 162, 373-381.
60. T. Wang, M. Wang, C. Ding and J. Fu, Chemical Communications, 2014, 50, 12469-12472.
61. T. Chen, H. Yu, N. Yang, M. Wang, C. Ding and J. Fu, Journal of Materials Chemistry B, 2014, 2, 4979-4982.
62. T. Chen, N. Yang and J. Fu, Chemical Communications, 2013, 49, 6555-6557.
63. M. Wang, T. Chen, C. Ding and J. Fu, Chemical Communications, 2014, 50, 5068-5071.
64. R. J. Mudakavi, A. M. Raichur and D. Chakravortty, RSC Advances, 2014, 4, 61160-61166.
65. V. Ambrogi, A. Donnadio, D. Pietrella, L. Latterini, F. A. Proietti, F. Marmottini, G. Padeletti, S. Kaciulis, S. Giovagnoli and M. Ricci, Journal of Materials Chemistry B, 2014, 2, 6054-6063.
66. A. Ahmed, J. Hearn, W. Abdelmagid and H. Zhang, Journal of Materials Chemistry, 2012, 22, 25027-25035.
67. L. Lin, H. Zhang, H. Cui, M. Xu, S. Cao, G. Zheng and M. Dong, Colloids and surfaces. B, Biointerfaces, 2013, 101, 97-100.
68. W. Fang, L. Ma, J. Zheng and C. Chen, J Mater Sci, 2014, 49, 3407-3413.
69. M. Liong, B. France, K. A. Bradley and J. I. Zink, Advanced Materials, 2009, 21, 1684-1689.
70. Y. Tian, J. Qi, W. Zhang, Q. Cai and X. Jiang, ACS Appl Mater Interfaces, 2014, 6, 12038-12045.
71. T. Liu, X. Song, Z. Guo, Y. Dong, N. Guo and X. Chang, Colloids and surfaces. B, Biointerfaces, 2014, 116, 793-796.
72. L. Wang, H. He, C. Zhang, L. Sun, S. Liu and R. Yue, Journal of applied microbiology, 2014, 116, 1106-1118.
73. K. Xu, J.-X. Wang, X.-L. Kang and J.-F. Chen, Materials Letters, 2009, 63, 31-33.
74. X. Zhang, H. Niu, J. Yan and Y. Cai, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2011, 375, 186-192.
75. L. B. Capeletti, L. F. de Oliveira, A. Goncalves Kde, J. F. de Oliveira, A. Saito, J. Kobarg, J. H. dos Santos and M. B. Cardoso, Langmuir, 2014, 30, 7456-7464.
76. G. Qi, L. Li, F. Yu and H. Wang, ACS Applied Materials & Interfaces, 2013, 5, 10874-10881.
77. L.-l. Li and H. Wang, Advanced Healthcare Materials, 2013, 2, 1298-1298.
78. V. Monzillo, C. Dalla Valle, M. Corbella, E. Percivalle, D. Sassera, D. Scevola and P. Marone, The new microbiologica, 2014, 37, 535-541.
79. I. K. Yazdi, M. B. Murphy, C. Loo, X. Liu, M. Ferrari, B. K. Weiner and E. Tasciotti, Journal of Tissue Engineering, 2014, 5, 2041731414536573.
80. Z.-m. Xiu, Q.-b. Zhang, H. L. Puppala, V. L. Colvin and P. J. J. Alvarez, Nano Letters, 2012, 12, 4271-4275.
81. J. Liu, D. A. Sonshine, S. Shervani and R. H. Hurt, ACS nano, 2010, 4, 6903-6913.
82. Magdalena Oćwieja, Zbigniew Adamczyk, Langmuir, 2013, 3546-3555
83. M. Dlugosz, M. Bulwan, G. Kania, M. Nowakowska and S. Zapotoczny, Journal of nanoparticle research : an interdisciplinary forum for nanoscale science and technology, 2012, 14, 1313.
84. F. Furno, K. S. Morley, B. Wong, B. L. Sharp, P. L. Arnold, S. M. Howdle, R. Bayston, P. D. Brown, P. D. Winship and H. J. Reid, The Journal of antimicrobial chemotherapy, 2004, 54, 1019-1024.
85. A. M. Burke, J. P. Hanrahan, D. A. Healy, J. R. Sodeau, J. D. Holmes and M. A. Morris, Journal of hazardous materials, 2009, 164, 229-234.
86. J. Li, X. Miao, Y. Hao, J. Zhao, X. Sun and L. Wang, Journal of colloid and interface science, 2008, 318, 309-314.
87. M. Mureseanu, A. Reiss, I. Stefanescu, E. David, V. Parvulescu, G. Renard and V. Hulea, Chemosphere, 2008, 73, 1499-1504.
88. M. R. Chaves, E. R. Dockal, R. C. Souza and P. M. Buchler, Environmental technology, 2009, 30, 663-671.
89. J. V. Ros-Lis, R. Casasus, M. Comes, C. Coll, M. D. Marcos, R. Martinez-Manez, F. Sancenon, J. Soto, P. Amoros, J. El Haskouri, N. Garro and K. Rurack, Chemistry (Weinheim an der Bergstrasse, Germany), 2008, 14, 8267-8278.
90. J J. Zhou, A. Guo and X. Qi, Scanning, 2013, 35, 412-417. DOI: 10.1002/sca.21086.
91. K. B. Andersen and K. von Meyenburg, Journal of bacteriology, 1980, 144, 114-123.
92. A. J. Smith, M. S. Jackson and J. Bagg, Journal of medical microbiology, 2001, 50, 940-946.
93. M. Otto, Nature reviews. Microbiology, 2009, 7, 555-567.
94. C. Beloin, A. Roux and J. M. Ghigo, in Bacterial Biofilms, ed. T. Romeo, Springer Berlin Heidelberg, 2008, 322, 249-289.
95. C. I. Kang and J. H. Song, Infection & chemotherapy, 2013, 45, 22-31.
96. J. H. Tenney, M. R. Moody, K. A. Newman, S. C. Schimpff, J. C. Wade, J. W. Costerton and W. P. Reed, Archives of internal medicine, 1986, 146, 1949-1954.
97. A. Bridier, P. Sanchez-Vizuete Mdel, D. Le Coq, S. Aymerich, T. Meylheuc, J. Y. Maillard, V. Thomas, F. Dubois-Brissonnet and R. Briandet, PloS one, 2012, 7, e44506.
98. G. Hedin, Scandinavian journal of infectious diseases. Supplementum, 1993, 90, 1-59.
99. K. Ostrowska, A. Strzelczyk, A. Rozalski and P. Staczek, Postepy higieny i medycyny doswiadczalnej (Online), 2013, 67, 1027-1033.
100. R. E. Ariano, C. Franczuk, A. Fine, G. K. Harding and S. A. Zelenitsky, Peritoneal dialysis international : journal of the International Society for Peritoneal Dialysis, 2002, 22, 335-338.
101. J. P. O'Gara and H. Humphreys, Journal of medical microbiology, 2001, 50, 582-587.
102. I. Sondi and B. Salopek-Sondi, Journal of colloid and interface science, 2004, 275, 177-182.
103. P. Gilbert, T. Maira-Litran, A. J. McBain, A. H. Rickard and F. W. Whyte, Advances in microbial physiology, 2002, 46, 202-256.
104. I. Keren, D. Shah, A. Spoering, N. Kaldalu and K. Lewis, Journal of bacteriology, 2004, 186, 8172-8180.
105. K. Lewis, Biochemistry. Biokhimiia, 2005, 70, 267-274.
106. M. E. Roberts and P. S. Stewart, Microbiology (Reading, England), 2005, 151, 75-80.

Chapter 3.
References
1. A. Mullard, Nat Rev Drug Discov, 2014, 13, 711-713.
2. A. Tavares, C. M. B. Carvalho, M. A. Faustino, M. G. P. M. S. Neves, J. P. C. Tomé, A. C. Tomé, J. A. S. Cavaleiro, Â. Cunha, N. C. M. Gomes, E. Alves and A. Almeida, Marine Drugs, 2010, 8, 91-105.
3. N. Komerik, M. Wilson and S. Poole, Photochemistry and photobiology, 2000, 72, 676-680.
4. G. Goldenberg and O. Hamid, Journal of drugs in dermatology : JDD, 2013, 12, 1369-1378.
5. G. Quereux, A. Brocard, M. Saint-Jean, L. Peuvrel, A. C. Knol, R. Allix, A. Khammari, J. J. Renaut and B. Dreno, Journal of the American Academy of Dermatology, 2013, 69, 890-897.
6. K. Ross, B. Cherpelis, M. Lien and N. Fenske, Dermatologic surgery : official publication for American Society for Dermatologic Surgery [et al.], 2013, 39, 1733-1744.
7. D. Separovic, P. Breen, N. B. Boppana, E. Van Buren, N. Joseph, J. M. Kraveka, M. Rahmaniyan, L. Li, T. I. Gudz, A. Bielawska, A. Bai, J. Bielawski, J. S. Pierce and M. Korbelik, International journal of oncology, 2013, 43, 2064-2072.
8. J. Y. Park, Y. H. Jang, Y. S. Kim, S. Sohn and Y. C. Kim, European journal of dermatology : EJD, 2013, 23, 471-477.
9. F. Almutawa, L. Thalib, D. Heckman, Q. Sun, I. Hamzavi and H. W. Lim, Photodermatology, photoimmunology & photomedicine, 2013, 1, 5-14.
10. M. Salem, S. Rohani and E. R. Gillies, RSC Advances, 2014, 4, 10815-10829.
11. W. Li, Y. Wang, Y. Song, L. Xu, J. Zhao and B. Fang, Oncology letters, 2015, 9, 1719-1724.
12. M. Borsari, E. Ferrari, R. Grandi and M. Saladini, Inorganica Chimica Acta, 2002, 328, 61-68.
13. S. Z. Moghadamtousi, H. A. Kadir, P. Hassandarvish, H. Tajik, S. Abubakar and K. Zandi, BioMed research international, 2014, 2014, 186864.
14. S. Wanninger, V. Lorenz, A. Subhan and F. T. Edelmann, Chemical Society Reviews, 2015, 44, 4986-5002.
15. O. A. Hamed, N. Mehdawi, A. Abu Taha, E. M. Hamed, M. A. Al-Nuri and A. S. Hussein, Iranian Journal of Pharmaceutical Research : IJPR, 2013, 12, 47-56.
16. R. Wilken, M. S. Veena, M. B. Wang and E. S. Srivatsan, Molecular Cancer, 2011, 10, 12-12.
17. N. K, P. Shenai, L. Chatra, P. K. Rao, V. KM and R. V. Prabhu, J Contemp Med, 2013, 3, 136-143.
18. Y.-J. Wang, M.-H. Pan, A.-L. Cheng, L.-I. Lin, Y.-S. Ho, C.-Y. Hsieh and J.-K. Lin, Journal of Pharmaceutical and Biomedical Analysis, 1997, 15, 1867-1876.
19. M. Heger, R. F. van Golen, M. Broekgaarden and M. C. Michel, Pharmacological reviews, 2014, 66, 222-307.
20. A. P. Ranjan, A. Mukerjee, L. Helson, R. Gupta and J. K. Vishwanatha, Anticancer research, 2013, 33, 3603-3609.
21. H. Tang, C. J. Murphy, B. Zhang, Y. Shen, E. A. Van Kirk, W. J. Murdoch and M. Radosz, Biomaterials, 2010, 31, 7139-7149.
22. Aysegul Altunbas, Seung J. Lee, Sigrid A. Rajasekaran, Joel P. Schneider, Darrin J. Pochan, Biomaterials, 2011, 32, 5906-5914.
23. D. Pucci, T. Bellini, A. Crispini, I. D'Agnano, P. F. Liguori, P. Garcia-Orduna, S. Pirillo, A. Valentini and G. Zanchetta, MedChemComm, 2012, 3, 462-468.
24. A. Hussain, K. Somyajit, B. Banik, S. Banerjee, G. Nagaraju and A. R. Chakravarty, Dalton Transactions, 2013, 42, 182-195.
25. A. K. Renfrew, N. S. Bryce and T. W. Hambley, Chemical Science, 2013, 4, 3731-3739.
26. D. Rehder, Metal ions in life sciences, 2013, 13, 139-169.
27. K. H. Thompson, J. H. McNeill and C. Orvig, Chemical Reviews, 1999, 99, 2561-2572.
28. K. H. Thompson, J. Lichter, C. LeBel, M. C. Scaife, J. H. McNeill and C. Orvig, Journal of inorganic biochemistry, 2009, 103, 554-558.
29. P. Poucheret, S. Verma, M. D. Grynpas and J. H. McNeill, Molecular and cellular biochemistry, 1998, 188, 73-80.
30. S. Banerjee and A. R. Chakravarty, Accounts of chemical research, 2015, 48, 2075-2083.
31. M. Liong, J. Lu, M. Kovochich, T. Xia, S. G. Ruehm, A. E. Nel, F. Tamanoi and J. I. Zink, ACS Nano, 2008, 2, 889-896.
32. H. Yamada, C. Urata, H. Ujiie, Y. Yamauchi and K. Kuroda, Nanoscale, 2013, 5, 6145-6153.
33. M. Colilla, F. Balas, M. Manzano and M. Vallet-Regí, Solid State Sciences, 2008, 10, 408-415.
34. M. Yu, L. Zhou, J. Zhang, P. Yuan, P. Thorn, W. Gu and C. Yu, Journal of colloid and interface science, 2012, 376, 67-75.
35. Z. Li, J. C. Barnes, A. Bosoy, J. F. Stoddart and J. I. Zink, Chemical Society Reviews, 2012, 41, 2590-2605.
36. S. Jambhrunkar, S. Karmakar, A. Popat, M. Yu and C. Yu, RSC Advances, 2014, 4, 709-712.
37. S. Jambhrunkar, Z. Qu, A. Popat, J. Yang, O. Noonan, L. Acauan, Y. Ahmad Nor, C. Yu and S. Karmakar, Molecular Pharmaceutics, 2014, 11, 3642-3655.
38. L. Ma'mani, S. Nikzad, H. Kheiri-manjili, S. al-Musawi, M. Saeedi, S. Askarlou, A. Foroumadi and A. Shafiee, European Journal of Medicinal Chemistry, 2014, 83, 646-654.
39. F. Hamam and M. Al-Remawi, Journal of Functional Foods, 2014, 8, 87-99.
40. K. Radhakrishnan, S. Gupta, D. P. Gnanadhas, P. C. Ramamurthy, D. Chakravortty and A. M. Raichur, Particle & Particle Systems Characterization, 2014, 31, 449-458.
41. H. Yan, C. Teh, S. Sreejith, L. Zhu, A. Kwok, W. Fang, X. Ma, K. T. Nguyen, V. Korzh and Y. Zhao, Angewandte Chemie International Edition, 2012, 51, 8373-8377.
42. F. Muhammad, A. Wang, M. Guo, J. Zhao, W. Qi, G. Yingjie, J. Gu and G. Zhu, ACS Applied Materials & Interfaces, 2013, 5, 11828-11835.
43. D. Jin, K.-W. Park, J. H. Lee, K. Song, J.-G. Kim, M. L. Seo and J. H. Jung, Journal of Materials Chemistry, 2011, 21, 3641-3645.
44. O. Planas, R. Bresoli-Obach, J. Nos, T. Gallavardin, R. Ruiz-Gonzalez, M. Agut and S. Nonell, Molecules (Basel, Switzerland), 2015, 20, 6284-6298.
45. Y. Han and J. Y. Ying, Angewandte Chemie International Edition, 2005, 44, 288-292.
46. V. Bich, N. Thuy, N. Binh, N. Huong, P. Yen and T. Luong, Physics and Engineering of New Materials, 2009, 127, 271-278.
47. C.-H. Lee, T.-S. Lin and C.-Y. Mou, The Journal of Physical Chemistry B, 2003, 107, 2543-2551.
48. K. I. Priyadarsini, Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2009, 10, 81-95.
49. F. Gao, Y. Zhang, H. Wan, Y. Kong, X. Wu, L. Dong, B. Li and Y. Chen, Microporous and Mesoporous Materials, 2008, 110, 508-516.
50. W. Qian, H. Wang, J. Chen and Y. Kong, Materials, 2015, 8, 1752-1765.
51. C. P. Jaroniec, M. Kruk, M. Jaroniec and A. Sayari, The Journal of Physical Chemistry B, 1998, 102, 5503-5510.
52. N. H. Khdary and M. A. Ghanem, RSC Advances, 2014, 4, 50114-50122.
53. J. Liu and D. Xue, Nanoscale Research Letters, 2010, 5, 1619-1626.
54. W. Gao, J. M. Chan and O. C. Farokhzad, Mol Pharm, 2010, 7, 1913-1920.
55. A. Abbaszadegan, Y. Ghahramani, A. Gholami, B. Hemmateenejad, S. Dorostkar, M. Nabavizadeh and H. Sharghi, Journal of Nanomaterials, 2015, 2015, 8.
56. A. Valentini, F. Conforti, A. Crispini, A. De Martino, R. Condello, C. Stellitano, G. Rotilio, M. Ghedini, G. Federici, S. Bernardini and D. Pucci, Journal of medicinal chemistry, 2009, 52, 484-491.
57. S. Banerjee, P. Prasad, I. Khan, A. Hussain, P. Kondaiah and A. R. Chakravarty, Zeitschrift für anorganische und allgemeine Chemie, 2014, 640, 1195-1204.
58. R. A. Sharma, W. P. Steward and A. J. Gescher, Advances in experimental medicine and biology, 2007, 595, 453-470.
59. P. Tyagi, M. Singh, H. Kumari, A. Kumari and K. Mukhopadhyay, PLoS ONE, 2015, 10, e0121313.
60. L. A. Pedigo, A. J. Gibbs, R. J. Scott and C. N. Street, Proceedings of SPIE, 73803H, 2009.
61. K. Nakamura, K. Ishiyama, H. Ikai, T. Kanno, K. Sasaki, Y. Niwano and M. Kohno, Journal of Clinical Biochemistry and Nutrition, 2011, 49, 87-95.
62. M. Fujii, M. Usui, S. Hayashi, E. Gross, D. Kovalev, N. Künzner, J. Diener and V. Y. Timoshenko, Journal of Applied Physics, 2004, 95, 3689-3693.
63. J J. Zhou, A. Guo and X. Qi, Scanning, 2013, 35, 412-417. DOI: 10.1002/sca.21086.
64. T. J. Dougherty, C. J. Gomer, B. W. Henderson, G. Jori, D. Kessel, M. Korbelik, J. Moan and Q. Peng, Journal of the National Cancer Institute, 1998, 90, 889-905.
65. F. Schulz, M.Horn, 2015, Tends in cell biology, 2015, 6, 339-346.

Chapter 4.
A. Tavares, C. M. B. Carvalho, M. A. Faustino, M. G. P. M. S. Neves, J. P. C. Tomé, A. C. Tomé, J. A. S. Cavaleiro, Â. Cunha, N. C. M. Gomes, E. Alves and A. Almeida, Marine Drugs, 2010, 8, 91-105.
2. N. Komerik, M. Wilson and S. Poole, Photochemistry and photobiology, 2000, 72, 676-680.
3. F. F. Sperandio, Y. Y. Huang and M. R. Hamblin, Recent patents on anti-infective drug discovery, 2013, 8, 108-120.
4. L. Bourre, F. Giuntini, I. M. Eggleston, C. A. Mosse, A. J. Macrobert and M. Wilson, Photochemical & photobiological sciences : Official journal of the European Photochemistry Association and the European Society for Photobiology, 2010, 9, 1613-1620.
5. S. K. Sharma, L. Y. Chiang and M. R. Hamblin, Nanomedicine (London, England), 2011, 6, 1813-1825.
6. G. Bertoloni, F. Rossi, G. Valduga, G. Jori, H. Ali and J. E. van Lier, Microbios, 1992, 71, 33-46.
7. Y. Nitzan, S. Gozhansky and Z. Malik, Current Microbiology, 1983, 8, 279-284.
8. Y. Nitzan, B. Shainberg and Z. Malik, Current Microbiology, 1987, 15, 251-258.
9. G. Bertoloni, B. Salvato, M. Dall'Acqua, M. Vazzoler and G. Jori, Photochemistry and photobiology, 1984, 39, 811-816.
10. E. Boye and J. Moan, Photochemistry and photobiology, 1980, 31, 223-228.
11. G. Bertoloni, F. Rossi, G. Valduga, G. Jori and J. van Lier, FEMS microbiology letters, 1990, 59, 149-155.
12. M. Vaara and T. Vaara, Antimicrobial agents and chemotherapy, 1983, 24, 114-122.
13. Y. Nitzan, M. Gutterman, Z. Malik and B. Ehrenberg, Photochemistry and photobiology, 1992, 55, 89-96.
14. A. P. Ribeiro, A. C. Pavarina, L. N. Dovigo, I. L. Brunetti, V. S. Bagnato, C. E. Vergani and C. A. Costa, Lasers in medical science, 2013, 28, 391-398.
15. L. N. Dovigo, J. C. Carmello, C. A. de Souza Costa, C. E. Vergani, I. L. Brunetti, V. S. Bagnato and A. C. Pavarina, Medical mycology, 2013, 51, 243-251.
16. T. A. Dahl, W. M. McGowan, M. A. Shand and V. S. Srinivasan, Archives of microbiology, 1989, 151, 183-185.
17. J. L. Clement and P. S. Jarrett, Metal-Based Drugs, 1994, 1, 467-482.
18. L. Ge, Q. Li, M. Wang, J. Ouyang, X. Li and M. M. Xing, International journal of nanomedicine, 2014, 9, 2399-2407.
19. S. Chernousova and M. Epple, Angewandte Chemie International Edition, 2013, 52, 1636-1653.
20. J. R. Morones-Ramirez, J. A. Winkler, C. S. Spina and J. J. Collins, Science translational medicine, 2013, 5, 190ra181.
21. M. B. Habash, A. J. Park, E. C. Vis, R. J. Harris and C. M. Khursigara, Antimicrobial agents and chemotherapy, 2014, 58, 5818-5830.
22. I. N. Ghosh, S. D. Patil, T. K. Sharma, S. K. Srivastava, R. Pathania and N. K. Navani, International journal of nanomedicine, 2013, 8, 4721-4731.
23. R. Singh, P. Wagh, S. Wadhwani, S. Gaidhani, A. Kumbhar, J. Bellare and B. A. Chopade, International journal of nanomedicine, 2013, 8, 4277-4290.
24. L. S. Devi and S. R. Joshi, Mycobiology, 2012, 40, 27-34.
25. S. Z. Naqvi, U. Kiran, M. I. Ali, A. Jamal, A. Hameed, S. Ahmed and N. Ali, International journal of nanomedicine, 2013, 8, 3187-3195.
26. P. Lalueza, D. Carmona, M. Monzón, M. Arruebo and J. Santamaría, Microporous and Mesoporous Materials, 2012, 156, 171-175.
27. O. Lyutakov, O. Hejna, A. Solovyev, Y. Kalachyova and V. Svorcik, RSC Advances, 2014, 4, 50624-50630.
28. M. Potara, E. Jakab, A. Damert, O. Popescu, V. Canpean and S. Astilean, Nanotechnology, 2011, 22, 135101.
29. S. Ruden, K. Hilpert, M. Berditsch, P. Wadhwani and A. S. Ulrich, Antimicrobial agents and chemotherapy, 2009, 53, 3538-3540.
30. I. S. Hwang, J. H. Hwang, H. Choi, K. J. Kim and D. G. Lee, Journal of medical microbiology, 2012, 61, 1719-1726.
31. S. Gaillet and J. M. Rouanet, Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association, 2014, 77c, 58-63.
32. C. N. Lok, C. M. Ho, R. Chen, Q. Y. He, W. Y. Yu, H. Sun, P. K. Tam, J. F. Chiu and C. M. Che, Journal of biological inorganic chemistry : JBIC : a publication of the Society of Biological Inorganic Chemistry, 2007, 12, 527-534.
33. S. Pal, Y. K. Tak and J. M. Song, Applied and environmental microbiology, 2007, 73, 1712-1720.
34. D. M. Aruguete, B. Kim, M. F. Hochella, Y. Ma, Y. Cheng, A. Hoegh, J. Liu and A. Pruden, Environmental Science: Processes & Impacts, 2013, 15, 93-102.
35. A. Ōya, T. Banse, F. Ohashi and S. Ōtani, Applied Clay Science, 1991, 6, 135-142.
36. S. Zhang, R. Fu, D. Wu, W. Xu, Q. Ye and Z. Chen, Carbon, 2004, 42, 3209-3216.
37. K. Kawahara, K. Tsuruda, M. Morishita and M. Uchida, Dental Materials, 2000, 16, 452-455.
38. L. Zhang, J. C. Yu, H. Y. Yip, Q. Li, K. W. Kwong, A.-W. Xu and P. K. Wong, Langmuir, 2003, 19, 10372-10380.
39. N. Perkas, A. Lipovsky, G. Amirian, Y. Nitzan and A. Gedanken, Journal of Materials Chemistry B, 2013, 1, 5309-5316.
40. K. H. Rhodes, S. A. Davis, F. Caruso, B. Zhang and S. Mann, Chemistry of Materials, 2000, 12, 2832-2834.
41. T. C. Long, N. Saleh, R. D. Tilton, G. V. Lowry and B. Veronesi, Environmental Science & Technology, 2006, 40, 4346-4352.
42. B. Xue, P. Chen, Q. Hong, J. Lin and K. L. Tan, Journal of Materials Chemistry, 2001, 11, 2378-2381.
43. R.-X. Dong, C.-C. Chou and J.-J. Lin, Journal of Materials Chemistry, 2009, 19, 2184-2188.
44. Y. Kuthati, P. J. Sung, C. F. Weng, C. Y. Mou and C. H. Lee, Journal of nanoscience and nanotechnology, 2013, 13, 2399-2430.
45. M. Liong, B. France, K. A. Bradley and J. I. Zink, Advanced Materials, 2009, 21, 1684-1689.
46. Y. Tian, J. Qi, W. Zhang, Q. Cai and X. Jiang, ACS Applied Materials & Interfaces, 2014, 6, 12038-12045.
47. V. Monzillo, C. Dalla Valle, M. Corbella, E. Percivalle, D. Sassera, D. Scevola and P. Marone, The new microbiologica, 2014, 37, 535-541.
48. H. Yu, Y. Zhu, H. Yang, K. Nakanishi, K. Kanamori and X. Guo, Dalton transactions (Cambridge, England : 2003), 2014, 43, 12648-12656.
49. L. Wang, H. He, C. Zhang, L. Sun, S. Liu and R. Yue, Journal of applied microbiology, 2014, 116, 1106-1118.
50. N. Gargiulo, A. M. Cusano, F. Causa, D. Caputo and P. A. Netti, Journal of materials science. Materials in medicine, 2013, 24, 2129-2135.
51. L. Lin, H. Zhang, H. Cui, M. Xu, S. Cao, G. Zheng and M. Dong, Colloids and surfaces. B, Biointerfaces, 2013, 101, 97-100.
52. M. A. Massa, C. Covarrubias, M. Bittner, I. A. Fuentevilla, P. Capetillo, A. Von Marttens and J. C. Carvajal, Materials science & engineering. C, Materials for biological applications, 2014, 45, 146-153.
53. N. Rangelova, L. Aleksandrov, T. Angelova, N. Georgieva and R. Muller, Carbohydrate polymers, 2014, 101, 1166-1175.
54. Y. Jeong, D. W. Lim and J. Choi, Advances in Materials Science and Engineering, 2014, 2014, 6.
55. R. Vankayala, A. Sagadevan, P. Vijayaraghavan, C.-L. Kuo and K. C. Hwang, Angewandte Chemie International Edition, 2011, 50, 10640-10644.
56. J. Y. Kim, C. Lee, M. Cho and J. Yoon, Water research, 2008, 42, 356-362.
57. R. Vankayala, C.-L. Kuo, A. Sagadevan, P.-H. Chen, C.-S. Chiang and K. C. Hwang, Journal of Materials Chemistry B, 2013, 1, 4379-4387.
58. T. S. Wu, K. X. Wang, G. D. Li, S. Y. Sun, J. Sun and J. S. Chen, ACS Appl Mater Interfaces, 2010, 2, 544-550.
59. A. Nadhman, S. Nazir, M. Ihsanullah Khan, S. Arooj, M. Bakhtiar, G. Shahnaz and M. Yasinzai, Free radical biology & medicine, 2014, 77, 230-238.
60. S. C. Boca, M. Potara, A. M. Gabudean, A. Juhem, P. L. Baldeck and S. Astilean, Cancer letters, 2011, 311, 131-140.
61. L.-C. Cheng, J.-H. Huang, H. M. Chen, T.-C. Lai, K.-Y. Yang, R.-S. Liu, M. Hsiao, C.-H. Chen, L.-J. Her and D. P. Tsai, Journal of Materials Chemistry, 2012, 22, 2244-2253.
62. S. Shi, X. Zhu, Z. Zhao, W. Fang, M. Chen, Y. Huang and X. Chen, Journal of Materials Chemistry B, 2013, 1, 1133-1141.
63. B. Hu, X. Cao, K. Nahan, J. Caruso, H. Tang and P. Zhang, Journal of Materials Chemistry B, 2014, 2, 7073-7081.
64. G. P. Wiederrecht, G. A. Wurtz and J. Hranisavljevic, Journal of Materials Chemistry B, 2014, 2, 7073-7081.
65. G. L. Liu, Y.-T. Long, Y. Choi, T. Kang and L. P. Lee, Nat Meth, 2007, 4, 1015-1017.
66. Y. Choi, T. Kang and L. P. Lee, Nano letters, 2009, 9, 85-90.
67. Z.-m. Xiu, Q.-b. Zhang, H. L. Puppala, V. L. Colvin and P. J. J. Alvarez, Nano Letters, 2012, 12, 4271-4275.
68. A. B. Lansdown, Current problems in dermatology, 2006, 33, 17-34.
69. J. Liu, D. A. Sonshine, S. Shervani and R. H. Hurt, ACS nano, 2010, 4, 6903-6913.
70. Magdalena Oćwieja, Zbigniew Adamczyk, Langmuir, 2013, 4, 3546-3555.
71. M. Dlugosz, M. Bulwan, G. Kania, M. Nowakowska and S. Zapotoczny, Journal of nanoparticle research : an interdisciplinary forum for nanoscale science and technology, 2012, 14, 1313.
72. F. Furno, K. S. Morley, B. Wong, B. L. Sharp, P. L. Arnold, S. M. Howdle, R. Bayston, P. D. Brown, P. D. Winship and H. J. Reid, The Journal of antimicrobial chemotherapy, 2004, 54, 1019-1024.
73. J. A. Lemire, J. J. Harrison and R. J. Turner, Nat Rev Micro, 2013, 11, 371-384.
74. Y.-S. E. Lin, R. D. Vidic, J. E. Stout and V. L. Yu, Water research, 1996, 30, 1905-1913.
75. H. I. Huang, H. Y. Shih, C. M. Lee, T. C. Yang, J. J. Lay and Y. E. Lin, Water research, 2008, 42, 73-80.
76. Y. Kuthati, R. K. Kankala, S.-X. Lin, C.-F. Weng and C.-H. Lee, Molecular Pharmaceutics, 2015, DOI: 10.1021/mp500836w.
77. J J. Zhou, A. Guo and X. Qi, Scanning, 2013, 35, 412-417. DOI: 10.1002/sca.21086.
78. O. Lyutakov, I. Goncharova, S. Rimpelova, K. Kolarova, J. Svanda and V. Svorcik, Materials Science and Engineering: C, 2015, 49, 534-540.
79. M. Wainwright, M. N. Byrne and M. A. Gattrell, Journal of Photochemistry and Photobiology B: Biology, 2006, 84, 227-230.
80. J. S. Kim, E. Kuk, K. N. Yu, J.-H. Kim, S. J. Park, H. J. Lee, S. H. Kim, Y. K. Park, Y. H. Park, C.-Y. Hwang, Y.-K. Kim, Y.-S. Lee, D. H. Jeong and M.-H. Cho, Nanomedicine: Nanotechnology, Biology and Medicine, 2007, 3, 95-101.
81. J. Siegel, K. Kolářová, V. Vosmanská, S. Rimpelová, J. Leitner and V. Švorčík, Materials Letters, 2013, 113, 59-62.
82. V. Vosmanska, K. Kolarova, S. Rimpelova and V. Svorcik, Cellulose, 2014, 21, 2445-2456.
83. P. J. Rivero, J. Goicoechea, A. Urrutia and F. J. Arregui, Nanoscale research letters, 2013, 8, 101.
84. N. Ayala-Núñez, H. Lara Villegas, L. del Carmen Ixtepan Turrent and C. Rodríguez Padilla, Nanobiotechnol, 2009, 5, 2-9.
85. F. Zsila, Z. Bikadi and M. Simonyi, Biochemical and biophysical research communications, 2003, 301, 776-782.
86. S. Agnihotri, S. Mukherji and S. Mukherji, RSC Advances, 2014, 4, 3974-3983.
87. W. Yang, P. Ding, L. Zhou, J. Yu, X. Chen and F. Jiao, Applied Surface Science, 2013, 282, 38-45.
88. S. Jambhrunkar, S. Karmakar, A. Popat, M. Yu and C. Yu, RSC Advances, 2014, 4, 709-712.
89. G. Massasso, M. Rodriguez-Castillo, J. Long, A. Grandjean, B. Onida, Y. Guari, C. Guerin and J. Larionova, Journal of Materials Chemistry A, 2015, 3, 179-188.
90. B. Zebib, Z. Mouloungui, #233, phirin and V. Noirot, Bioinorganic Chemistry and Applications, 2010, 2010. DOI: http://dx.doi.org/10.1155/2010/292760
91. K. Varaprasad, Y. M. Mohan, K. Vimala and K. Mohana Raju, Journal of Applied Polymer Science, 2011, 121, 784-796.
92. A. L. González, C. Noguez, J. Beránek and A. S. Barnard, The Journal of Physical Chemistry C, 2014, 118, 9128-9136.
93. B. G. Trewyn, J. A. Nieweg, Y. Zhao and V. S. Y. Lin, Chemical Engineering Journal, 2008, 137, 23-29.
94. A. M. El Badawy, R. G. Silva, B. Morris, K. G. Scheckel, M. T. Suidan and T. M. Tolaymat, Environmental Science & Technology, 2011, 45, 283-287.
95. A. Abbaszadegan, Y. Ghahramani, A. Gholami, B. Hemmateenejad, S. Dorostkar, M. Nabavizadeh and H. Sharghi, Journal of Nanomaterials, 2015, 2015, 8.
96. C. Mohanty, S. Acharya, A. K. Mohanty, F. Dilnawaz and S. K. Sahoo, Nanomedicine : nanotechnology, biology, and medicine, 2010, 5, 433-449.
97. Y. Jiang, A. W. Leung, H. Hua, X. Rao and C. Xu, International Journal of Photoenergy, 2014, 2014, 7.
98. P. Tyagi, M. Singh, H. Kumari, A. Kumari and K. Mukhopadhyay, PLoS ONE, 2015, 10, e0121313.
99. J. R. Morones, J. L. Elechiguerra, A. Camacho, K. Holt, J. B. Kouri, J. T. Ramirez and M. J. Yacaman, Nanotechnology, 2005, 16, 2346-2353.


連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top