|
[1] R. Gross, I. Matthews, and S. Baker, ``Appearance-based face recognition and light fields,'' TPAMI, vol. 26, pp. 449--465, 2004. [2] A. Li, S. Shan, and W. Gao, ``Coupled bias-variance tradeoff for cross-pose face recognition,'' IEEE Transactions on Image Processing, vol. 21, no. 1, pp. 305--315, 2012. [3] V. Blanz and T. Vetter, ``Face recognition based on fitting a 3D morphable model,''TPAMI, vol. 25, pp. 1063--1074, Sep. 2003. [4] J. Heo and M. Savvides, ``Gender and ethnicity specific generic elastic models from a single 2d image for novel 2d pose face synthesis and recognition,'' TPAMI, vol. 34, no. 12, pp. 2341--2350, 2012. [5] U.Prabhu,J.Heo,andM.Savvides, ``Unconstrained pose-invariant face recognition using 3d generic elastic models,'' TPAMI, vol. 33, pp. 1952--1961, 2011. [6] X. Zhang and Y. Gao, ``Heterogeneous specular and diffuse 3-D surface approximation for face recognition across pose,'' IEEE Trans. Inf. Forensics and Security, vol. 7, no. 2, pp. 1952--1961, 2012. [7] A.Asthana,T.K.Marks,M.J.Jones,K.H.Tieu,andM.V.Rohith,``Fullyautomatic pose-invariant face recognition via 3d pose normalization,'' in ICCV, pp. 937--944, 2011. [8] D. Yi, Z. Lei, and S. Z. Li, ``Towards pose robust face recognition,'' in Computer Vision and Pattern Recognition (CVPR), 2013 IEEE Conference on, pp. 3539--3545, IEEE, 2013. [9] T. Sim, S. Baker, and M. Bsat, ``The CMU pose, illumination, and expression (PIE) database, ''in Proc. IEEE Conf. Automatic Face and Gesture Recognition, pp.46--51, 2002. [10] X. Zhu and D. Ramanan, ``Face detection, pose estimation, and landmark localization in the wild,'' in Computer Vision and Pattern Recognition (CVPR), 2012 IEEE Conference on, pp. 2879--2886, IEEE, 2012. [11] I. Kemelmacher-Shlizerman and R. Basri, ``3D face reconstruction from a single image using a single reference face shape,'' TPAMI, vol. 33, pp. 394--405, Feb. 2011. [12] B. Y. Li, A. S. Mian, W. Liu, and A. Krishna, ``Using kinect for face recognition under varying poses, expressions, illumination and disguise,'' in Applications of Computer Vision (WACV), 2013 IEEE Workshop on, pp. 186--192, IEEE, 2013. [13] C. Ciaccio, L. Wen, and G. Guo, ``Face recognition robust to head pose changes based on the rgb-dsensor, '' in Biometrics: Theory, Applications and Systems(BTAS), IEEE Intl Conf. on, pp. 1--6, IEEE, 2013. [14] X. Zhang and Y. Gao, ``Face recognition across pose: A review,'' Pattern Recognition, vol. 42, pp. 2876--2896, Nov. 2009. [15] S. J. Prince, J. H. Elder, J. Warrell, and F. M. Felisberti, ``Tied factor analysis for face recognition across large pose differences,'' TPAMI, vol. 30, pp. 970--984, June 2008. [16] C. D. Castillo and D. W. Jacobs, ``Using stereo matching for 2-D face recognition across pose,'' in CVPR, pp. 1--8, 2007. [17] D. Jiang, Y. Hu, S. Yan, L. Zhang, H. Zhang, and W. Gao, ``Efficient 3D reconstruction for face recognition,'' Pattern Recognition, vol. 38, pp. 787--798, June 2005. [18] R. Gross, I. Matthews, J. Cohn, T. Kanade, and S. Baker, ``Multi-pie,'' Image and Vision Computing, vol. 28, pp. 807--813, May 2010. [19] B. Heisele, T. Serre, and T. Poggio, ``A component-based framework for face detection and identification,'' International Journal of Computer Vision, vol. 74, no. 2, pp. 167--181, 2007. [20] P.-H. Lee, G.-S. Hsu, T. Chen, and Y.-P. Hung, ``Facial trait code,'' IEEE Trans. Circuits Syst. Video Techn., vol. 23, no. 4, pp. 648--660, 2013. [21] G. Goswami, S. Bharadwaj, M. Vatsa, and R. Singh, ``On rgb-d face recognition using kinect,'' in Biometrics: Theory, Applications and Systems (BTAS), IEEE Intl Conf. on, pp. 1--6, IEEE, 2013. [22] P. Phillips, P. J.Flynn, T. Scruggs, K. W. Bowyer, J. Chang, K. Hoffman, J. Marques, J.Min, and W. Worek, ``Overview of the face recognition grand challenge,'' in CVPR, vol. 1, pp. 947--954, 2005. [23] M. Alexa, J. Behr, D. Cohen-Or, S. Fleishman, D. Levin, and C. T. Silva, ``Computing and rendering point set surfaces,'' IEEE Trans. Vis. Comput. Graph., vol. 9, no. 1, pp. 3--15, 2003. [24] L. Ding and A. M. Martinez, ``Features versus context: An approach for precise and detailed detection and delineation of faces and facial features, '' TPAMI, vol. 32, no. 11, pp. 2022--2038, 2010. [25] J. Wright, A. Y. Yang, A. Ganesh, S. S. Sastry, and Y. Ma, ``Robust face recognition via sparse representation,'' IEEE Trans. Pattern Anal. Mach. Intell., vol. 31, no. 2, pp. 210--227, 2009. [26] A. Yang, A. Ganesh, S. Sastry, and Y. Ma, ``Fast l1-minimization algorithms and an application in robust face recognition: A review,'' Technical Report, no. UCB/EECS-2010-13, 2010. [27] W. Deng, J. Hu, and J. Guo, ``Extended SRC: Undersampled face recognition via intraclass variant dictionary,'' IEEE Trans. Pattern Anal. Mach. Intell., vol. 34, no. 9, pp. 1864--1870, 2012. [28] A. Y. Yang, S. S. Sastry, A. Ganesh, and Y. Ma, ``Fast l1-minimization algorithms and an application in robust face recognition: A review,'' in ICIP, pp. 1849--1852, 2010. [29] W. Deng, J. Hu, J. Guo, W. Cai, and D. D. Feng, ``Robust, accurate and efficient face recognition from a single training image: A uniform pursuit approach,'' Pattern Recognition, vol. 43, no. 5, pp. 1748--1762, 2010. [30] A. Asthana, S. Zafeiriou, S. Cheng, and M. Pantic, ``Robust discriminative response map fitting with constrained local models,'' in Computer Vision and Pattern Recognition (CVPR), 2013 IEEE Conference on, pp. 3444--3451, IEEE, 2013. [31] X.TanandB.Triggs, ``Enhanced local texture feature sets for face recognition under difficult lighting conditions,'' Image Processing, IEEE Trans. on, vol. 19, pp. 1635--1650, June 2010. [32] B. Holt, E.-J. Ong, H. Cooper, and R. Bowden, ``Putting the pieces together: Connected poselets for human pose estimation,'' in Computer Vision Workshops (ICCV Workshops), 2011 IEEE International Conference on, pp. 1196--1201, IEEE, 2011. [33] N. Silberman, D. Hoiem, P. Kohli, and R. Fergus, ``Indoor segmentation and support inference from rgbd images,'' in Computer Vision--ECCV 2012, pp. 746--760, Springer, 2012. [34] P.Henry,M.Krainin,E.Herbst,X.Ren,andD.Fox,``Rgb-dmapping: Usingkinect- style depth cameras for dense 3d modeling of indoor environments,'' The International Journal of Robotics Research, vol. 31, no. 5, pp. 647--663, 2012. [35] N. Dalal and B. Triggs, ``Histograms of oriented gradients for human detection,'' in International Conference on Computer Vision & Pattern Recognition (C. Schmid, S. Soatto, and C. Tomasi, eds.), vol. 2, (INRIA Rhone-Alpes, ZIRST-655, av. de l'Europe, Montbonnot-38334), pp. 886--893, June 2005. [36] G. Fanelli, M. Dantone, J. Gall, A. Fossati, and L. Van Gool, ``Random forests for real time 3d face analysis, ''International Journal of Computer Vision, vol. 101, no. 3, pp. 437--458, 2013. [37] T. Huynh, R. Min, and J.-L. Dugelay, ``An efficient lbp-based descriptor for facial depth images applied to gender recognition using rgb-d face data,'' in Computer Vision-ACCV 2012 Workshops, pp. 133--145, Springer, 2013. [38] P. N. Belhumeur, D. W. Jacobs, D. J. Kriegman, and N. Kumar, ``Localizing parts of faces using a consensus of exemplars,'' in CVPR, pp. 545--552, 2011. [39] J. M. Saragih, S. Lucey, and J. F. Cohn, ``Deformable model fitting by regularized landmark mean-shift,'' International Journal of Computer Vision, vol. 91, no. 2, pp. 200--215, 2011. [40] M. Heikkila and M. Pietikainen, ``A texture-based method for modeling the background and detecting moving objects, ''IEEE Trans. on Pattern Analysis and Machine Intelligence, vol. 28, no. 4, pp. 657--662, 2006.
|