[1] D. L. Greene, J. L. Hopson, J. Li, “Have we run out of oil yet? Oil peaking analysis from an optimist’s perspective” Energy Policy 34 (2006) 515.
[2] K. Takei, K. ishihara, K. Kumai, T. Iwahori, K. Miyake, T. Nakatsu, N. Tereda, N. Arai, “Performance of large-scale secondary lithium batteries for electric vehicles and home-use load-leveling systems” J. Power Sources 119–121 (2003) 887.
[3] K. Adachi, H. Tajima, T. Hashimoto, K. Kobayashi, “Development of 16 kWh power storage system applying Li-ion batteries” J. Power Sources 119–121 (2003) 897.
[4] K. Tamura, T. Horiba, T. Iwahori, “Large-scale development of lithium batteries for electric vehicles and electric power storage applications” J. Power Sources 81–82 (1999) 156.
[5] R. Spotniz, Advances in Lithium-Ion Batteries, Kluwer Academic/Plenum Publishers, New York, (2003) p. 433.
[6] G. A. Nazri, G. Pistoia, Lithium Batteries Science and Technology, Kluwer Academic Publishers, New York, (2004).
[7] W. V. Schalkwijk, B. Scrosati, Advances in Lithium-Ion Batteries, Kluwer Academic/Plenum Publishers, New York, (2002).
[8] J. –M. Tarascon, M. Armand, “Issues and challenges facing rechargeable lithium batteries” Nature 414 (2001) 359.
[9] G. T. K. Feyand, T. H. Kao, “Lithium organic electrolyte batteries”, Chemistry, The Chinese Chemical Society, 47 (1989) 47.
[10] J.-I Yamaki, S. –I. Tobishima, K. Hayashi, K. Saito, Y. Nemoto, M. Arakawa, “Consideration of the morphology of electrochemically deposited lithium in an organic electrolyte” J. Power Sources 74 (1998) 219.
[11] 楊家諭,鄭賢豪,“二次鋰離子電池的安全性”工業材料 117 (1996) 71.[12] H.V. Venkatasetty, Lithium Battery Technology, Wiley Publishers, New York, (1984) Chaper 1.
[13] S. Kondo, M. Wakihara, O. Yamamoto, Lithium Ion Batteries, Kodansha Publishers, Tokyo, (1998) Chapter 9.
[14] P. Fragnaud, D. M. Schleich, “Thin film components for solid state lithium batteries” Sens. Actuators A 51 (1995) 21.
[15] P. Birke, W. F. Chu, W. Weppner, “Materials for lithium thin-film batteries for application in silicon technology” Solid State Ionics 93 (1997) 1.
[16] P. Birke, W. Weppner, “Electrochemical analysis of thin film electrolytes and electrodes for application in rechargeable all solid state lithium microbatteries” Electrochim. Acta 42 (1997) 3375.
[17] C. H. Chen, K. Amine, “Ionic conductivity, lithium insertion and extraction of lanthanum lithium titanate” Solid State Ionics 144 (2001) 51.
[18] M. Murayama, N. Sonoyama, A. Yamada, R. Kanno, “Material design of new lithium ionic conductor, thio-LISICON, in the Li2S–P2S5 system” Solid State Ionics 170 (2004) 173.
[19] R. G. Kelly, P. J. Moran, “The rate limiting mechanism in Li/I2 (P2VP) batteries” J. Electrochem. Soc. 134 (1987) 25.
[20] T. R. Jow, C. C. Liang, “Interface between solid electrode and solid electrolyte - A study of the Li/LiI/Al2O3/solid-electrolyte system” J. Electrochem. Soc. 130 (1983) 737.
[21] A. R. West, Basic Solid State Chemistry, Wiley Publishers, New York, (1997) p. 325.
[22] J. Wahl, “Ionic conductivity of lithium nitride doped with hydrogen” Solid State Commun. 29 (1979) 485.
[23] A. G. Belous, G. N. Novitskaya, S. V. Polyanetskaya, Yu. I. Gornikov, “Study of complex oxides with the composition La2/3–xLi3xTiO3” Inorg. Mater. 23 (1987) 412.
[24] J. B. Bates, N. J. Dudney, G. R. Gruzalski, R. A. Zuhr, A. Choudhury, C. F. Luck, J. D. Robertson, “Electrical properties of amorphous lithium electrolyte thin films” Solid State Ionics 53–56 (1992) 647.
[25] J. B. Bates, N. J. Dudney, G. R. Gruzalski, R. A. Zuhr, A. Choudhury, C. F. Luck, J. D. Robertson, “Fabrication and characterization of amorphous lithium electrolyte thin films and rechargeable thin-film batteries” J. Power Sources 43 (1993) 103.
[26] J. B. Bates, G. R. Gruzalski, N. J. Dudney, C. F. Luck, Xiaohua Yu, “Rechargeable thin-film lithium batteries” Solid State Ionics 70–71 (1994) 619.
[27] J. B. Bates, N. J. Dudney, D. C. Lubben, G. R. Gruzalski, B. S. Kwak, Xiaohua Yu, R. A. Zuhr, “Thin-film rechargeable lithium batteries” J. Power Sources 54 (1995) 58.
[28] J. B. Bates, D. C. Lubben, N. J. Dudney, G. R. Gruzalski, F. X. Hart, “5 volt plateau in LiMn2O4 thin films” J. Electrochem. Soc. 142 (1995) L149.
[29] Y. Inaguma, C. Liquan, M. Itoh, T. Nakamura, T. Uchida, H. Ikuta, M. Wakihara, “High ionic conductivity in lithium lanthanum titanate” Solid State Commun. 86 (1993) 689.
[30] H. Kawai, J. Kuwano, “Lithium ion conductivity of A-site deficient perovskite solid solution La0.67–xLi3xTiO3” J. Electrochem. Soc. L78 (1994) 141.
[31] Y. Inaguma, L. Chen, M. Itoh, T. Nakamura, “Candidate compounds with perovskite structure for high lithium ionic conductivity” Solid State Ionics 70/71 (1994) 196.
[32] Y. Inaguma and M. Itoh, “Influences of carrier concentration and site percolation on lithium ion conductivity in perovskite-type oxides” Solid State Ionics 86–88 (1996) 257.
[33] M. Nakayama, T. Usui, Y. Uchimoto, M. Wakihara, M. Yamamoto, “Changes in Electronic Structure upon Lithium Insertion into the A-Site Deficient Perovskite Type Oxides (Li,La)TiO3” J. Phys. Chem. B 109 (2005) 4135.
[34] D. H. Doughty, “Material issues in lithium ion rechargeable battery technology” SAMPLE J. 32 (1996) 75.
[35] J. B. Bates, N. J. Dudney, B. Neudecker, A. Ueda, C. D. Evans, “Thin-film lithium and lithium-ion batteries” Solid State Ionics 135 (2000) 33.
[36] T. J. Boyle, D. Ingersoll, R. T. Cygan, M. A. Rodriguez, K. Rahimian, J. A. Voight, “All-ceramic thin film battery” SANDIA REPORT (SAND2002-3615) (2002) p. 8.
[37] 楊家諭,“高分子電池未來發展趨勢”工業材料 144 (1998) 163.[38] 王常珍, 固體電解質和化學傳感器, 冶金工業出版社, 北京, (2000) p. 73.
[39] J. HLADIK, Physics of Electrolytes Vol.1 Transport Processes in Solid Electrolytes and in Electrodes, Academic press, New York, (1972) Chap. 2.
[40] M. Barsoum, Fundamentals of Ceramics, McGraw-Hill, New York, (1997) pp. 215–216.
[41] A. R. West, Solid State Chemistry and Its Applications, Wiley Publishers, New York, (1992) p. 453.
[42] 王常珍, 固體電解質和化學傳感器, 冶金工業出版社, 北京, (2000) p. 25.
[43] M. Barsoum, Fundamentals of Ceramics, McGraw-Hill, New York, (1997) p. 213.
[44] J. HLADIK, Physics of Electrolytes Vol.1 Transport Processes in Solid Electrolytes and in Electrodes, Academic press, New York, (1972) p. 300.
[45] A. R. West, Basic Solid State Chemistry, Wiley Publishers, New York, (1997) p. 323.
[46] D. Stauffer, A. Aharony, Introduction to Percolation Theory, Taylor&Francis Publishers, London, (1994).
[47] M. Sahimi, Applications of Percolation Theory, Taylor&Francis Publishers, London, (1994).
[48] F. C. Walsh, “Electrolytic conductivity and its measurement” Trans. Inst. Met. Finish. 70 (1992) 45.
[49] W. H. Flygare, R. A. Huggins, “Theory of ionic transport in crystallographic tunnels” J. Phys. Chem. Solids 34 (1973) 1199.
[50] J. HLADIK, Physics of Electrolytes Vol.1 Transport Processes in Solid Electrolytes and in Electrodes, Academic press, New York, (1972) p. 169.
[51] R. D. Armstrong, R. S. Bulmer, T. Dickinson, “Some factors responsible for high ionic conductivity in simple solid compounds” J. Solid State Chem. 8 (1973) 219.
[52] J. Emsley, The Elements, Oxford University press, New York, (1989) pp. 104–105.
[53] D. W. Jeppson, J. L. Ballif, W. W. Yuan, B. E. Chou, Lithium Literature Review: Lithium’s Properties and Interactions, Hanford Engineering Development Laboratory (1978).
[54] E. E. Hellstrom, and W. Van Gool, “Constraints for the selection of lithium solid electrolytes” Revue de Chimie minérale 17 (1980) 263.
[55] H. V. Venkatasetty, Lithium Battery Technology, Academic press, Wiley Publishers, New York, (1984) pp. 208–209.
[56] R. N. Singh, “Compatibility of ceramics with liquid Na and Li” J. Am. Ceram. Soc. 59 (1976) 112.
[57] V. M. Goldschmidt, Skrifter Norske Videnskaps-Akad. Oslo, I. Mat.-Nat. Kl. (1926) 8.
[58] O. Muller, R. Roy, The Major Ternary Structural Families, Springer-Verlag press, New York, (1974) p. 221.
[59] J. Ibarra, A. Várez, C. León, J. Santamaría, L. M. Torres-Martinez, J. Sanz, “Influence of composition on the structure and conductivity of the fast ionic conductors La2/3–xLi3xTiO3 (0.03 ≤ x ≤ 0.167)” Solid State Ionics 134 (2000) 219.
[60] Y. Harada, T. Ishigaki, H. Kawai, J. Kuwano, “Lithium ion conductivity of polycrystalline perovskite La2/3–xLi3xTiO3 with ordered and disordered arrangements of the A-site ions” Solid State Ionics 108 (1998) 407.
[61] J. Emery, J. Y. Buzare, O. Bohnke, J. L. Fourquet, “Lithium-7 NMR and ionic conductivity studies of lanthanum lithium titanate electrolytes” Solid State Ionics 99 (1997) 41.
[62] M. Itoh, Y. Inaguma, W. –H. Jung, L. Chen, T. Nakamura, “High lithium ion conductivity in the perovskite-type compounds Ln1/2Li1/2TiO3 (Ln = La, Pr, Nd, Sm)” Solid State Ionics 70/71 (1994) 203.
[63] Y. Inaguma, J. Yu, Y. –J Shan, M. Itoh, T. Nakamura, “The effect of the hydrostatic pressure on the ionic conductivity in a perovskite lanthanum lithium titanate” J. electrochem. Soc. 142 (1995) L8.
[64] Y. Inaguma, Y. Matsui, J. Yu, Y. –J Shan, T. Nakamura, M. Itoh, “Effect of substitution and pressure on lithium ion conductvivity in perovskites Ln1/2Li1/2TiO3 (Ln = La, Pr, Nd, and Sm)” J. Phys. Chem Solids 58 (1997) 843.
[65] S. Yue Jin, C. Liquan, Y. Inaguma, M. Itoh, T. Nakamura, “Oxide cathode with perovskite structure for rechargeable lithium batteries” J. Power Sources 54 (1995) 397.
[66] O. Bohnke, C. Bohnke, J. L. Fourquet, “Mechanism of ionic conduction and electrochemical intercalation of lithium into the perovskite lanthanum lithium titanate” Solid State Ionics 91 (1996) 21.
[67] M. Klingler, W. F. Chu, W. Weppner, “Coulometric titration of substituted Li3xLa(2–x)/3TiO3” Ionics 3 (1997) 289.
[68] H. –T. Chung, J. –G. Kim, H. –G. Kim, “Dependence of the lithium ionic conductivity on the B-site ion substitution in (Li0.5La0.5)Ti1–xMxO3 (M=Sn,Zr,Mn,Ge)” Solid State Ionics 107 (1998) 153.
[69] O. Bohnke, J. L. Fourquet, J. Y. Buzaré, P. Florian, D. Massiot, “Polaronic effects on lithium motion in intercalated perovskite lithium lanthanum titanate observed by 7Li NMR and impedance spetroscopy” J. Phys.: Condens. Matrer 11 (1999) 10401.
[70] A. Morata-Orrantia, S. Garcia-Martin, E. Moran, M. A. Alario-Franco, “A new La2/3LixTi1–xAlxO3 solid solution: structure, microstructure, and Li+ conductivity” Chem. Mater. 14 (2002) 2871.
[71] G. Zhuang, K. Wang, P. N. Jr. Ross, “XPS characterization of the reactions of Li with tetrahydrofuran and propylene carbonate” Surf. Sci. 387 (1997) 199.
[72] C. H. Chen, K. Amine, “Ionic conductivity, lithium insertion and extraction of lanthanum lithium titanate” Solid State Ionics 144 (2001) 51.
[73] A. J. Jacobson, B. C. Tofield, B. E. F. Fender, “The structures of BaCeO3, BaPrO3 and BaTbO3 by neutron diffraction: lattice parameter relations and ionic radii in O-perovskites” Acta Cryst. B28 (1972) 956.
[74] J. A. Kilner, P. Barrow, R. J. Brook, M. J. Norgett, “Electrolyte for high temperature Fuel Cell: Experimental and theoretical studies of the perovskite LaAlO3” J. Power Sources 3 (1978) 67.
[75] J. Mizusaki, I. Yasuda, J. I. Shimoyama, S. Yamauchi, K. Fueki, “Electrical conductivity, defect equilibrium and oxygen vacancy diffusion coefficient of La1–xCaxAlO3 single crystals” J. Electrochem. Soc. 140 (1993) 467.
[76] J. F. Watts, J. Wolstenholme, An Introduction to Surface Analysis by XPS and AES, Wiley press, New York, (2003).
[77] 伍秀菁, 汪若文, 林美吟, Introduction to Instrumentation: Surface Analysis Instrument, 行政院國家科學委員會精密儀器發展中心出版, 新竹, (1998) pp. 5–6.
[78] T. L. Barr, Modern ESCA: The Principles and Practice of X-Ray Photoelectron Spectroscopy, CRC press, London, (1994).
[79] 伍秀菁, 汪若文, 林美吟, Introduction to Instrumentation: Surface Analysis Instrument, 行政院國家科學委員會精密儀器發展中心出版, 新竹, (1998) pp. 16–19.
[80] 王常珍, 固體電解質和化學傳感器, 冶金工業出版社, 北京, (2000) pp. 33–38.
[81] 史美倫, 交流阻抗原理及應用, 國防工業出版社, 北京, (2001).
[82] J. R. Macdonald, Impedance Spectroscopy Emphasizing Solid Materials and Systems; John Wiley and Sons press, New York, 2005.
[83] J. E. Bauerle, “Study of solid electrolyte polarization by a. complex admittance method” J. Phys. Chem. Solids 30 (1969) 265.
[84] A. D. Robertson, S. Garcia Martin, A. Coats, A. R. West, “Phase diagrams and crystal chemistry in the Li+ ion conducting perovskites, Li0.5–3xRE0.5+xTiO3: RE = La, Nd” J. Mater. Chem. 5 (1995) 1405.
[85] Y. Hirakoso, Y. Harada, J. Kuwano, Y. Saito, Y. Ishikawa, T. Eguchi, “Lithium ion conduction in the ordered and disordered phases of A-site deficient perovskite La0.56Li0.33TiO3” Key Eng. Mater. 169–170 (1999) 209.
[86] J. L. Fourquet, H. Duroy, M. P. Crosnier-Lopez, “Structural and microstructural studies of the series La2/3–xLi3xTiO3” J. Solid State Chem. 127 (1996) 283.
[87] N. S. P. Bhuvanesh, O. Bohnké, H. Duroy, M. P. Crosnier-Lopez, J. Emery, J. L. Fourquet, “Topotactic H+/Li+ ion exchange on La2/3−xLi3xTiO3: new metastable perovskite phases La2/3−xTiO3−3x(OH)3x and La2/3−xTiO3−3x/2 obtained by further dehydration” Mater. Res. Bull. 33 (1998) 1681.
[88] M. Abe, K. Uchino, “X-ray study of the deficient perovskite La2/3TiO3” Mater. Res. Bull. 9 (1974) 147.
[89] Y. Inaguma, J. H. Sohn, I. S. Kim, M. Itoh, T. Nakamura, “Quantum paraelectricity in a perovskite La1/2Na1/2TiO3” J. Phys. Soc. Jpn. 61 (1992) 3831.
[90] M. T. Anderson, K. B. Greenwood, G. A. Taylor, K. R. Poeppelmeier, “B-cation arrangements in double perovskites” Prog. Solid State Chem. 22 (1993) 197.
[91] J. F. Moulder, Handbook of X-ray Photoelectron Spectroscopy: a Reference Book of Standard Spectra for Identification and Interpretation of XPS Data, Physical Electronics press, Eden Prairie, 1995.
[92] J. P. Miao, L. P. Li, H. J. Liu, D. P. Xu, Z. Lu, Y. B. Song, W. H. Su, Y. G. Zheng, “Structure Characteristics and valence state study for La1–xNaxTiO3 synthesised under high-pressure and high-temperature conditions” Mater. Lett. 42 (2000) 1.
[93] D. L. Lam, B. W. Veal, D. E. Ellis “Electronic structure of lanthanum perovskites with 3d transition elements” Phys. Rev. B 22 (1980) 5730.
[94] G. K. Wertheim, R. L. Cohen, A. Rosencwaig, H. J. Guggenheim, Electron Spectroscopy; North-Holland press, Amsterdam, 1972.
[95] C. N. R. Rao, D. D. Sarma, “Study of electron states of solids by techniques of electron spectroscopy” J. Solid State Chem. 45 (1982) 14.
[96] F. Guillemot, M. C. Porté, C. Labrugère, Ch. Baquey, “Ti4+ to Ti3+ conversion of TiO2 uppermost layer by low-temperature vacuum annealing: interest for titanium biomedical applications” J. Colloid Interface Sci. 255 (2002) 75.
[97] L. Q. Wang, D. R. Baer, M. H. Engelhard, “Creation of variable concentrations of defects on TiO2(110) using low-density electron beams” Surf. Sci. 320 (1994) 295.
[98] S. Stramare, V. Thangadurai, W. Weppner, “Lithium lanthanum titanates: a review” Chem. Mater. 15 (2003) 3974.
[99] D. R. Lide, CRC Handbook of Chemistry and Physics, 85th ed., CRC Press, New York, 2004.
[100] P. A. Jonsson, Deconvolution of Images and Spectra, Academic press, New York, 1997.
[101] D. C. Sinclair, J. M. S. Skakle, F. D. Morrison, R. I. Smith, T. P. Beales, “Structure and electrical properties of oxygen-deficient hexagonal BaTiO3” J. Mater. Chem. 9 (1999) 1327.
[102] C. W. Ban, G. M. Choi, “The effect of sintering on the grain boundary conductivity of lithium lanthanum titanates” Solid State Ionics 140 (2001) 285.
[103] S. García-Martín, A. Morata-Orrantia, M. Á. Alario-Franco, “Influence of the crystal microstructure on the dielectric response of the La0.67Li0.2Ti0.8Al0.2O3” J. Appl. Phys 100 (2006) 054101.
[104] R. D. Cannon, Electron Transfer Reactions; Butterworths: London, 1980.
[105] G. C. Allen, J. M. Dyke, “An investigation of the optical spectrum of lithium doped nickel oxide” Chem. Phys. Lett. 37 (1976) 391.
[106] A. J. Bosman, C. J. Crevecoeur, “Dipole relaxation losses in CoO doped with Li or Na” J. Phys. Chem. Solids 29 (1968) 109.
[107] B. Reuter, E. Riedel, G. Z. Buxbaum, “Über Oxidsysteme mit Übergangsmetall- ionen in verschiedenen Oxydationsstufen. VII. Das System Mn(NixV2–x)O4” Z. Anorg. Allg. Chem. 367 (1969) 113.
[108] V. Thangadurai, W. Weppner, “Li6ALa2Ta2O12 (A = Sr, Ba): Novel Garnet-like oxide for fast lithium ion conduction” Adv. Funct. Mater. 15 (2005) 107.
[109] P. Birke, S. Schamer, R. A. Huggins, W. Weppner, “Electrolytic stability limit and rapid lithium insertion in the fast-ion-conducting Li0.29La0.57TiO3 perovskite-type compound” J. Electrochem. Soc. 144 (1997) L167.
[110] E. Iguchi, N. Kubota, T. Nakamori, N. Yamamoto, K. J. Lee, “Polaronic conduction in n-type BaTiO3 doped with La2O3 or Gd2O3” Phys. Rev. 43 (1991) 8646.
[111] F. Lichtenberg, T. Williams, D. Widmer, J. G. Bednorz, “Electric and magnetic properties of the first layered conducting titanium and niobium oxides” Z. Phys. B-Condensed Matter 84 (1991) 369.
[112] I. Yamada, Y. Iriyama, T. Abe, Z. Ogumi, “Lithium-ion transfer between LixCoO2 and polymer gel electrolytes” Science and Technology of Advanced Materials 7 (2006) 519.
[113] M. –S. Wu, P. –C. Julia Chiang, J. –C. Lin, “Electrochemical investigations on advanced lithium-ion batteries by three-electrode measurements” J. Electrochem. Soc. 152 (2005) A47.
[114] H. Aono, E. Sugimoto, Y. Sakaoka, N. Imanaka, G. Adach, “Ionic conductivity of solid electrolytes based on lithium titanium phosphate” J. Electrochem. Soc. 137 (1990) 1023.
[115] H. Aono, E. Sugimoto, Y. Sakaoka, N. Imanaka, G. Adach, “Electrical property and sinterability of LiTi2(PO4)3 mixed with lithium salt (Li3PO4 or Li3BO3)” Solid State Ionics 47 (1991) 257.
[116] H. Aono, E. Sugimoto, Y. Sakaoka, N. Imanaka, G. Adach, “Electrical properties of ceramic electrolytes for LiMxTi2–x(PO4)3 + yLi2O, M = Ge, Sn, Hf, and Zr systems” J. Electrochem. Soc. 140 (1993) 1827.
[117] J. G. kim, H. G. Kim, H. T. Chung, “Microstructure-ionic conductivity relationships in perovskite lithium lanthanum titanate” J. Mater. Sci. Lett. 18 (1999) 493.
[118] 曾怡仁, 方冠榮, “BaZrO3添加對La0.57Li0.3TiO3晶體結構及導電性質之影響” 國立成功大學碩士論文,台灣 台南, 2003.[119] Y. Harada, Y. Hiracoso, H. Kawai, J. Kuwano, “Order–disorder of the A-site ions and lithium ion conductivity in the perovskite solid solution La0.67−xLi3xTiO3 (x=0.11)” Solid State Ionics 121 (1999) 245.
[120] A. Várez, J. Ibarra, A. Rivera, C. León, J. Santamaría, M. A. Laguna, M. L. Sanjuán, J. Sanz, “Influence of Quenching Treatments on Structure and Conductivity of the Li3xLa2/3-xTiO3 Series” Chem. Mater. 15 (2003) 225.
[121] C. Boundias, D. Monceau, CaRIne Crystallography, Senlis, 1998.
[122] A. Rivera, C. León, J. Santamaría, A. Várez, M. A. Paris, J. Sanz, “Li3xLa2/3−xTiO3 fast ionic conductors.: Correlation between lithium mobility and structure” J. Non-Cryst Solids 307–310 (2002) 992.
[123] S. Škapin, D. Kolar, D. Suvorov, “X-ray diffraction and microstructural investigation of the Al2O3–La2O3–TiO2 system” J. Am. Ceram. Soc. 76[9] (1993) 2359.
[124] H. Yoshioka, “Unusual dielectric behavior of La–Ti–Al–O ceramics with perovskite structure” Jpn. J. Appl. Phys. 33 (1994) L945.
[125] J. H. Moon, H. S. Park, K. T. Lee, J. H. Choi, D. H. Teo, S. J. Yoon, H. J. Kim, “Microwave dielectric properties of the (1–x)La2/3TiO3–xLaAlO3 system” Jpn. J. Appl. Phys. 36 (1997) 6814.
[126] H. J. Lee, H. M. Park, Y. K. Cho, S. Nahm, “Microstructure characterization of the (1–x)La2/3TiO3-xLaAlO3 system” J. Am. Ceram. Soc. 86[8] (2003) 1395.
[127] A. J. Jacobson, B. C. Tofield, B. E. F. Fender, “The Structures of BaCeO3, BaPrO3 and BaTbO3 by neutron diffraction: Lattice parameter relations and ionic radii in O-perovskites” Acta Cryst. B28 (1972) 956.
[128] T. J. B. Holland and S. A. T. Redfern, “Unit cell parameter refinement: changing the dependent variable and use of regression diagnostics” Mineralogical Magazine 61 (1997) 65.
[129(a)] M. Nakayama, H. Ikuta, Y. Uchimoto, M. Wakihara, Y. Terada, “Relationship between the Li ionic conduction and the local structures in B-site substituted perovskite compounds, (Li0.1La0.3)1+xMxNb1–xO3 (M=Zr, Ti; x=0, 0.05)” Appl. Phys. Lett. 81 (2002) 2977.
[129(b)] M. Nakayama, H. Ikuta, Y. Uchimoto, M. Wakihara, “Ionic conduction of lithium in B-site substituted perovskite compounds, (Li0.1La0.3)yMxNb1–xO3 (M = Zr, Ti, Ta)” J. Mater. Chem. 12 (2002) 1500.
[130] A. Rivera, C. Leon, J. Santamaria, A. Varez, O. V’yunov, A. G. Belous, J. A. Alonso, J. Sanz, “Percolation-limited ionic diffusion in Li0.5–xNaxLa0.5TiO3 perovskites (0 ≤ x ≤ 0.5)” Chem. Mater. 14 (2002) 5148.
[131] Y. Inaguma, Y. Matsui, Y. J. Shan, M. Itoh, T. Nakamura, “Lithium ion conductivity in the perovskite-type LiTaO3–SrTiO3 solid solution” Solid State Ionics 79 (1995) 91.
[132] O. Bohnke, C. Bohnke, J. Ould Sid’Ahmed, M. P. Crosnier-Lopez, h. Duroy, F. Le Berre, J. L. Fourquet, “Lithium ion conductivity in new perovskite oxides [AgyLi1–x]3xLa2/3–x�Z1/3–2xTiO3 (x = 0.09 and 0 ≤ y ≤ 1)” Chem. Mater. 13 (2001) 1593.