跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.136) 您好!臺灣時間:2025/09/20 02:52
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:王怡升
研究生(外文):Yi-ShengWang
論文名稱:氧化石墨烯於太陽光催化反應下生成過氧化氫
論文名稱(外文):Photocatalytic Hydrogen Peroxide Production by Graphene Oxide under Sunlight
指導教授:侯文哲
指導教授(外文):Wen-Che Hou
學位類別:碩士
校院名稱:國立成功大學
系所名稱:環境工程學系
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:英文
論文頁數:50
中文關鍵詞:氧化石墨烯過氧化氫光催化反應太陽光無有機電子提供者
外文關鍵詞:Graphene OxideHydrogen PeroxidePhotocatalystSunlightOrganic Electron Donor-Free
相關次數:
  • 被引用被引用:0
  • 點閱點閱:257
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
過氧化氫 (H2O2) 是一種常見且乾淨的氧化劑與燃料,在工業上有多種用途。目前量產過氧化氫的方法是一種高耗能的製程,過程中不但需要提供氫氣還要以貴重金屬作為催化劑,因此,如何更永續地製造H2O2成為近年來的研究方向。在此研究中,我們以太陽光催化一種新興的平面奈米碳材──氧化石墨烯 (GO),並且討論此反應下生成H2O2 的效率,我們發現在六小時的模擬太陽光催化下,含有GO的溶液中產生了超過1 mM的H2O2,過程中不需要多數光催化反應中必須的有機電子提供者,而且H2O2的產率在類似的系統中是最高的。我們還發現氧氣 (O2) 在此反應中是必要的,雙電子的氧還原是可能的反應路徑,另外,溶液的pH值也扮演著重要的角色,較高的pH值有較高的H2O2產率,但是在高pH值中也加速了GO本身的光還原反應而失去光催化的活性。 H2O2的量子產率 (AQYs) 也有在本研究中被討論。 研究結果指出,以太陽光催化GO產生H2O2 相當具有潛力,不但只需要太陽光能,更不需要有機的電子提供者,對環境相對友善。
Hydrogen peroxide (H2O2) is a clean oxidant and fuel that is desirable in many real-world applications. Current industrial manufacturing of H2O2 involves expensive, noble metal-based catalysts with high energy demand. Searching for more environmentally sustainable process for H2O2 production merits greater attention in research. In this work, the potential of graphene oxide (GO), an emerging, two-dimensional carbon-based nanomaterial, as a new photocatalyst toward H2O2 photoproduction driven by solar energy was explored. The result indicates that 〉 1 mM of H2O2 can be photoproduced within 6 h of solar irradiation even without organic electron donors present. This is particularly attractive considering that photocatalytic H2O2 production processes usually require organic electron donors. To our knowledge, the H2O2 photoproduction reported here is among the highest values in related work. O2 is needed for this process and greater yield is favorable at increased pH. The greater yield at increased pH contrasts the more rapid loss of GO’s long-term photocatalytic stability that can be attributed to greater phototransformation of GO at increased pH. Two-electron O2 reduction is the likely pathway toward H2O2 formation. The apparent quantum yields (AQYs) were also reported. The results indicate that GO is a promising photocatalyst toward H2O2 production that can be driven by renewable sunlight energy under organic electron donor-free condition.
摘要 I
ABSTRACT II
誌謝 III
CONTENTS IV
LIST OF TABLE VI
LIST OF FIGURE VII
CHAPTER 1. INTRODUCTION 1
1.1 Background and Motivation 1
1.2 Objective 3
CHAPTER 2. LITERATURE REVIEWS 4
2.1 Properties and Applications of GO 4
2.1.1 GO as a Photocatalysis 4
2.1.2 Photocatalytic ROS Formation of GO 5
2.2 Photocatalytic H2O2 Production 7
CHAPTER 3. EXPERIMENTAL PROCEDURE 11
3.1 Experimental Materials 11
3.2 Simulated Sunlight Irradiation 11
3.3 Photoreaction Quantum Yield Studies 14
3.4 Analysis 15
3.4.1 Hydrogen Peroxide 15
3.4.2 X-ray Photoelectron Spectroscopy (XPS) 16
3.4.3 Atomic Force Microscope (AFM) 17
CHAPTER 4. RESULT AND DISCUSSION 18
4.1 Graphene Oxide Characterizations 18
4.2 Photocatalytic Formation of H2O2 by GO 19
4.3 Solution Chemistry on Photoproduction of H2O2 21
4.4 Role of Superoxide. 23
4.5 Effect of Organic Electron Donor Addition 26
4.6 Structural Evolution of GO during Photocatalysis 28
4.7 Apparent Quantum Yields 32
4.8 Optimal Photocatalytic Conditions 33
4.9 Reusability and Stability 35
CHAPTER 5. CONCLUSION 37
5.1 Conclusion 37
APPENDIX 39
REFERENCE 43

(1) Xiang, Q.; Yu, J.; Jaroniec, M. Graphene-based semiconductor photocatalysts. Chem. Soc. Rev. 2012, 41 (2), 782–796.
(2) Zhang, N.; Yang, M.-Q.; Liu, S.; Sun, Y.; Xu, Y.-J. Waltzing with the Versatile Platform of Graphene to Synthesize Composite Photocatalysts. Chem. Rev. 2015, 115 (18), 10307–10377.
(3) Radich, J. G.; Krenselewski, A. L.; Zhu, J.; Kamat, P. V. Is Graphene a Stable Platform for Photocatalysis? Mineralization of Reduced Graphene Oxide With UV-Irradiated TiO2 Nanoparticles. Chem. Mater. 2014, 26 (15), 4662–4668.
(4) Radich, J. G.; Kamat, P. V. Making Graphene Holey. Gold-Nanoparticle-Mediated Hydroxyl Radical Attack on Reduced Graphene Oxide. ACS Nano 2013, 7 (6), 5546–5557.
(5) Eda, G.; Lin, Y.-Y.; Mattevi, C.; Yamaguchi, H.; Chen, H.-A.; Chen, I.-S.; Chen, C.-W.; Chhowalla, M. Blue Photoluminescence from Chemically Derived Graphene Oxide. Adv. Mater. 2010, 22 (4), 505–509.
(6) Dreyer, D. R.; Park, S.; Bielawski, C. W.; Ruoff, R. S. The chemistry of graphene oxide. Chem. Soc. Rev. 2010, 39 (1), 228.
(7) Gao, W.; Alemany, L. B.; Ci, L.; Ajayan, P. M. New insights into the structure and reduction of graphite oxide. Nat. Chem. 2009, 1 (5), 403–408.
(8) Chien, C.-T.; Li, S.-S.; Lai, W.-J.; Yeh, Y.-C.; Chen, H.-A.; Chen, I.-S.; Chen, L.-C.; Chen, K.-H.; Nemoto, T.; Isoda, S.; et al. Tunable Photoluminescence from Graphene Oxide. Angew. Chem. Int. Ed. 2012, 51 (27), 6662–6666.
(9) Guo, L.; Shao, R.-Q.; Zhang, Y.-L.; Jiang, H.-B.; Li, X.-B.; Xie, S.-Y.; Xu, B.-B.; Chen, Q.-D.; Song, J.-F.; Sun, H.-B. Bandgap Tailoring and Synchronous Microdevices Patterning of Graphene Oxides. J. Phys. Chem. C 2012, 116 (5), 3594–3599.
(10) Yeh, T.-F.; Chen, S.-J.; Yeh, C.-S.; Teng, H. Tuning the Electronic Structure of Graphite Oxide through Ammonia Treatment for Photocatalytic Generation of H2 and O2 from Water Splitting. J. Phys. Chem. C 2013, 117 (13), 6516–6524.
(11) Yeh, T.-F.; Chan, F.-F.; Hsieh, C.-T.; Teng, H. Graphite Oxide with Different Oxygenated Levels for Hydrogen and Oxygen Production from Water under Illumination: The Band Positions of Graphite Oxide. J. Phys. Chem. C 2011, 115 (45), 22587–22597.
(12) Yeh, T.-F.; Syu, J.-M.; Cheng, C.; Chang, T.-H.; Teng, H. Graphite Oxide as a Photocatalyst for Hydrogen Production from Water. Adv. Funct. Mater. 2010, 20 (14), 2255–2262.
(13) Hsu, H.-C.; Shown, I.; Wei, H.-Y.; Chang, Y.-C.; Du, H.-Y.; Lin, Y.-G.; Tseng, C.-A.; Wang, C.-H.; Chen, L.-C.; Lin, Y.-C.; et al. Graphene oxide as a promising photocatalyst for CO2 to methanol conversion. Nanoscale 2012, 5 (1), 262–268.
(14) Tsukamoto, D.; Shiro, A.; Shiraishi, Y.; Sugano, Y.; Ichikawa, S.; Tanaka, S.; Hirai, T. Photocatalytic H2O2 Production from Ethanol/O2 System Using TiO2 Loaded with Au–Ag Bimetallic Alloy Nanoparticles. ACS Catal. 2012, 2 (4), 599–603.
(15) Teranishi, M.; Naya, S.; Tada, H. In Situ Liquid Phase Synthesis of Hydrogen Peroxide from Molecular Oxygen Using Gold Nanoparticle-Loaded Titanium(IV) Dioxide Photocatalyst. J. Am. Chem. Soc. 2010, 132 (23), 7850–7851.
(16) Kaynan, N.; Berke, B. A.; Hazut, O.; Yerushalmi, R. Sustainable photocatalytic production of hydrogen peroxide from water and molecular oxygen. J. Mater. Chem. A 2014, 2 (34), 13822–13826.
(17) Campos-Martin, J. M.; Blanco-Brieva, G.; Fierro, J. L. G. Hydrogen Peroxide Synthesis: An Outlook beyond the Anthraquinone Process. Angew. Chem. Int. Ed. 2006, 45 (42), 6962–6984.
(18) Mase, K.; Yoneda, M.; Yamada, Y.; Fukuzumi, S. Seawater usable for production and consumption of hydrogen peroxide as a solar fuel. Nat. Commun. 2016, 7, 11470.
(19) Edwards, J. K.; Solsona, B.; N, E. N.; Carley, A. F.; Herzing, A. A.; Kiely, C. J.; Hutchings, G. J. Switching Off Hydrogen Peroxide Hydrogenation in the Direct Synthesis Process. Science 2009, 323 (5917), 1037–1041.
(20) Shiraishi, Y.; Kanazawa, S.; Tsukamoto, D.; Shiro, A.; Sugano, Y.; Hirai, T. Selective Hydrogen Peroxide Formation by Titanium Dioxide Photocatalysis with Benzylic Alcohols and Molecular Oxygen in Water. ACS Catal. 2013, 3 (10), 2222–2227.
(21) Kormann, C.; Bahnemann, D. W.; Hoffmann, M. R. Photocatalytic production of hydrogen peroxides and organic peroxides in aqueous suspensions of titanium dioxide, zinc oxide, and desert sand. Environ. Sci. Technol. 1988, 22 (7), 798–806.
(22) Cai, R.; Kubota, Y.; Fujishima, A. Effect of copper ions on the formation of hydrogen peroxide from photocatalytic titanium dioxide particles. J. Catal. 2003, 219 (1), 214–218.
(23) Maurino, V.; Minero, C.; Mariella, G.; Pelizzetti, E. Sustained production of H2O2 on irradiated TiO2 – fluoride systems. Chem. Commun. 2005, No. 20, 2627–2629.
(24) Fukushima, M.; Tatsumi, K.; Tanaka, S.; Nakamura, H. Photocatalytic Production of Hydrogen Peroxide by Tris(2,2‘-bipyridine) Ruthenium(II) Using Humic Acids as Electron Donor. Environ. Sci. Technol. 1998, 32 (24), 3948–3953.
(25) Yamada, Y.; Nomura, A.; Miyahigashi, T.; Ohkubo, K.; Fukuzumi, S. Acetate Induced Enhancement of Photocatalytic Hydrogen Peroxide Production from Oxalic Acid and Dioxygen. J. Phys. Chem. A 2013, 117 (18), 3751–3760.
(26) Zhuang, H.; Yang, L.; Xu, J.; Li, F.; Zhang, Z.; Lin, H.; Long, J.; Wang, X. Robust Photocatalytic H2O2 Production by Octahedral Cd3(C3N3S3)2 Coordination Polymer under Visible Light. Sci. Rep. 2015, 5, 16947.
(27) Shiraishi, Y.; Kanazawa, S.; Kofuji, Y.; Sakamoto, H.; Ichikawa, S.; Tanaka, S.; Hirai, T. Sunlight-Driven Hydrogen Peroxide Production from Water and Molecular Oxygen by Metal-Free Photocatalysts. Angew. Chem. Int. Ed. 2014, 53 (49), 13454–13459.
(28) Shiraishi, Y.; Kanazawa, S.; Sugano, Y.; Tsukamoto, D.; Sakamoto, H.; Ichikawa, S.; Hirai, T. Highly Selective Production of Hydrogen Peroxide on Graphitic Carbon Nitride (g-C3N4) Photocatalyst Activated by Visible Light. ACS Catal. 2014, 4 (3), 774–780.
(29) Moon, G.; Kim, W.; Bokare, A. D.; Sung, N.; Choi, W. Solar production of H2 O2 on reduced graphene oxide–TiO2 hybrid photocatalysts consisting of earth-abundant elements only. Energy Env. Sci 2014, 7 (12), 4023–4028.
(30) Kato, S.; Jung, J.; Suenobu, T.; Fukuzumi, S. Production of hydrogen peroxide as a sustainable solar fuel from water and dioxygen. Energy Environ. Sci. 2013, 6 (12), 3756–3764.
(31) Isaka, Y.; Oyama, K.; Yamada, Y.; Suenobu, T.; Fukuzumi, S. Photocatalytic production of hydrogen peroxide from water and dioxygen using cyano-bridged polynuclear transition metal complexes as water oxidation catalysts. Catal Sci Technol 2016, 6 (3), 681–684.
(32) Isaka, Y.; Kato, S.; Hong, D.; Suenobu, T.; Yamada, Y.; Fukuzumi, S. Bottom-up and top-down methods to improve catalytic reactivity for photocatalytic production of hydrogen peroxide using a Ru-complex and water oxidation catalysts. J. Mater. Chem. A 2015, 3 (23), 12404–12412.
(33) Zhao, Y.; Jafvert, C. T. Environmental photochemistry of single layered graphene oxide in water. Environ. Sci. Nano 2015, 2 (2), 136–142.
(34) Fu, P. P.; Xia, Q.; Hwang, H.-M.; Ray, P. C.; Yu, H. Mechanisms of nanotoxicity: Generation of reactive oxygen species. J. Food Drug Anal. 2014, 22 (1), 64–75.
(35) Kamat, J. P.; Devasagayam, T. P. A.; Priyadarsini, K. I.; Mohan, H. Reactive oxygen species mediated membrane damage induced by fullerene derivatives and its possible biological implications. Toxicology 2000, 155 (1–3), 55–61.
(36) Zhu, Y.; Murali, S.; Cai, W.; Li, X.; Suk, J. W.; Potts, J. R.; Ruoff, R. S. Graphene and Graphene Oxide: Synthesis, Properties, and Applications. Adv. Mater. 2010, 22 (35), 3906–3924.
(37) Novoselov, K. S.; Fal′ko, V. I.; Colombo, L.; Gellert, P. R.; Schwab, M. G.; Kim, K. A roadmap for graphene. Nature 2012, 490 (7419), 192–200.
(38) Allen, M. J.; Tung, V. C.; Kaner, R. B. Honeycomb Carbon: A Review of Graphene. Chem. Rev. 2010, 110 (1), 132–145.
(39) Dutta, T.; Sarkar, R.; Pakhira, B.; Ghosh, S.; Sarkar, R.; Barui, A.; Sarkar, S. ROS generation by reduced graphene oxide (rGO) induced by visible light showing antibacterial activity: comparison with graphene oxide (GO). RSC Adv 2015, 5 (98), 80192–80195.
(40) Hu, X.; Zhou, M.; Zhou, Q. Ambient Water and Visible-Light Irradiation Drive Changes in Graphene Morphology, Structure, Surface Chemistry, Aggregation, and Toxicity. Environ. Sci. Technol. 2015, 49 (6), 3410–3418.
(41) Hummers, W. S.; Offeman, R. E. Preparation of Graphitic Oxide. J. Am. Chem. Soc. 1958, 80 (6), 1339–1339.
(42) Marcano, D. C.; Kosynkin, D. V.; Berlin, J. M.; Sinitskii, A.; Sun, Z.; Slesarev, A.; Alemany, L. B.; Lu, W.; Tour, J. M. Improved Synthesis of Graphene Oxide. ACS Nano 2010, 4 (8), 4806–4814.
(43) Hatchard, C. G.; Parker, C. A. A New Sensitive Chemical Actinometer. II. Potassium Ferrioxalate as a Standard Chemical Actinometer. Proc. R. Soc. Lond. Math. Phys. Eng. Sci. 1956, 235 (1203), 518–536.
(44) Baga, A. N.; Johnson, G. R. A.; Nazhat, N. B.; Saadalla-Nazhat, R. A. A simple spectrophotometric determination of hydrogen peroxide at low concentrations in aqueous solution. Anal. Chim. Acta 1988, 204, 349–353.
(45) Kosaka, K.; Yamada, H.; Matsui, S.; Echigo, S.; Shishida, K. Comparison among the Methods for Hydrogen Peroxide Measurements To Evaluate Advanced Oxidation Processes:  Application of a Spectrophotometric Method Using Copper(II) Ion and 2,9-Dimethyl-1,10-phenanthroline. Environ. Sci. Technol. 1998, 32 (23), 3821–3824.
(46) Yang, D.; Velamakanni, A.; Bozoklu, G.; Park, S.; Stoller, M.; Piner, R. D.; Stankovich, S.; Jung, I.; Field, D. A.; Ventrice Jr., C. A.; et al. Chemical analysis of graphene oxide films after heat and chemical treatments by X-ray photoelectron and Micro-Raman spectroscopy. Carbon 2009, 47 (1), 145–152.
(47) Takahagi, T.; Ishitani, A. XPS studies by use of the digital difference spectrum technique of functional groups on the surface of carbon fiber. Carbon 1984, 22 (1), 43–46.
(48) Yumitori, S. Correlation of C1s chemical state intensities with the O1s intensity in the XPS analysis of anodically oxidized glass-like carbon samples. J. Mater. Sci. 2000, 35 (1), 139–146.
(49) Hou, W.-C.; Chowdhury, I.; Goodwin, D. G.; Henderson, W. M.; Fairbrother, D. H.; Bouchard, D.; Zepp, R. G. Photochemical Transformation of Graphene Oxide in Sunlight. Environ. Sci. Technol. 2015, 49 (6), 3435–3443.
(50) Hoffman, A. J.; Carraway, E. R.; Hoffmann, M. R. Photocatalytic Production of H2O2 and Organic Peroxides on Quantum-Sized Semiconductor Colloids. Environ. Sci. Technol. 1994, 28 (5), 776–785.
(51) Bielski, B. H. J.; Cabelli, D. E.; Arudi, R. L.; Ross, A. B. Reactivity of HO2/O−2 Radicals in Aqueous Solution. J. Phys. Chem. Ref. Data 1985, 14 (4), 1041–1100.
(52) Qiang, Z.; Chang, J.-H.; Huang, C.-P. Electrochemical generation of hydrogen peroxide from dissolved oxygen in acidic solutions. Water Res. 2002, 36 (1), 85–94.
(53) Heterogenous Photochemical Electron Transfer, High Definition Photocopy edition.; CRC Press: Boca Raton, Fla, 1988.
(54) McCord, J. M.; Fridovich, I. Superoxide Dismutase AN ENZYMIC FUNCTION FOR ERYTHROCUPREIN (HEMOCUPREIN). J. Biol. Chem. 1969, 244 (22), 6049–6055.
(55) Sutherland, M. W.; Learmonth, B. A. The Tetrazolium Dyes MTS and XTT Provide New Quantitative Assays for Superoxide and Superoxide Dismutase. Free Radic. Res. 1997, 27 (3), 283–289.
(56) Dimiev, A. M.; Alemany, L. B.; Tour, J. M. Graphene Oxide. Origin of Acidity, Its Instability in Water, and a New Dynamic Structural Model. ACS Nano 2013, 7 (1), 576–588.
(57) Hem, J. D. Study and Interpretation of the Chemical Characteristics of Natural Water; Department of the Interior, U.S. Geological Survey, 1985.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊