跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.108) 您好!臺灣時間:2025/09/03 00:43
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳姿菡
研究生(外文):Tsu-Han Chen
論文名稱:口蹄疫病毒結構性蛋白及非結構性蛋白抗體檢驗試劑之研發
論文名稱(外文):Development of diagnostic reagents for detecting antibodies to structural and non-structural proteins of foot-and-mouth disease virus
指導教授:蔡向榮蔡向榮引用關係
指導教授(外文):Hsiang-Jung Tsai
口試委員:張紹光周崇熙王金和李龍湖鍾文彬陳世平
口試委員(外文):Shao-Kuang ChangChung-Hsi ChouChing-Ho WangLong-Huw LeeWen-Bin ChungShih Ping Chen
口試日期:2014-07-18
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:獸醫學研究所
學門:獸醫學門
學類:獸醫學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:英文
論文頁數:87
中文關鍵詞:口蹄疫病毒結構性蛋白非結構性蛋白抗體檢測酵素連結免疫吸附法Luminex分析
外文關鍵詞:Foot-and-mouth disease virusStructural proteinNon-structural proteinAntibody detectionEnzyme-linked immunosorbent assayLuminex assay
相關次數:
  • 被引用被引用:0
  • 點閱點閱:427
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
口蹄疫 (FMD)、豬水&;#30129;病 (SVD)、水&;#30129;性口炎 (VS) 及水&;#30129;疹 (VE) 皆屬高度傳染性之動物水&;#30129;性疾病,這些疾病於臨床上常被疑惑而不易區別診斷。近年來陸續研發建立能檢測口蹄疫抗體檢測方法且能有效區別其他水&;#30129;性疾病,包括sandwich ELISA、sigleplex Luminex及multiplex Luminex (xMAP) 等三種方法。使用的試驗重組蛋白產製於原核大腸桿菌 (E.coli.) 表現系統,經純化而高度保留口蹄疫病毒 (FMDV) O/TW/1997 病毒株的VP1結構蛋白及O/TW/1999病毒株的3ABC非結構蛋白等抗原決定位區域,藉此利用特異性的重組蛋白量產製作單株抗體,以間接結合方式分別建立盤式及微珠等複合型界面檢測平台,應用在血清樣品中的FMDV標的抗體如結構蛋白 (SP-VP1) 及非結構蛋白 (NSP-3ABC) 等評估與分析。在第一項研究中,sandwich ELISA經試驗檢測結果於診斷敏感性 (Dsn) 大致可達98.4%,及於健康和免疫豬隻所測試之診斷特異性 (Dsp) 可達100%,從NSP抗體檢測能力顯示相當於prioCHECK和UBI等商品化試劑,以sandwich ELISA進一步分別與prioCHECK、UBI及CHEKIT等商品化試劑比較分析後,發現一致性分別為97.5%、93.4%及66.6%,其中Kappa統計分析值各為0.95、0.87及0.37。且sandwich ELISA除了可檢測台灣O型口蹄疫病毒株之外,也可檢測其他六種血清型如A、C、Asia 1、SAT 1、SAT 2、SAT 3等牛源血清中的NSP抗體。第二項研究以sigleplex Luminex分析檢測64支感染、307支免疫及280支健康等豬隻血清中的FMDV-NSP抗體,於感染樣品之Dsn可高達100%, Dsp之分析結果顯示免疫樣品可達98.7%,及於健康樣品可達97.5-100%。比較sigleplex Luminex 及商品化3ABC polypeptide blocking ELISA二者之一致性為96.3%,且Kappa統計值為0.92。經試驗顯示sigleplex Luminex與sandwich ELISA二者於感染後的豬隻最早可於第八天檢測到NSP-3ABC抗體。然而,以sigleplex Luminex方法檢測15頭經攻毒而仍出現典型水泡病變的免疫豬皆呈現NSP抗體陽轉反應,sandwich ELISA則只有11頭呈現陽轉反應。第三項研究以xMAP Luminex評估單一血清樣品可同時檢測到FMDV SP-VP1及NSP-3ABC等抗體。經試驗結果顯示,於661支來自感染、健康及免疫等豬隻血清樣品,評估FMDV-SP抗體之Dsn約為90.0-98.7%,及Dsp為93.0-96.5%。然而評估FMDV-NSP抗體之Dsn為90.0%,及Dsp為93.3-99.1%。以xMAP檢測SP及NSP抗體之最早出現時期分別在感染後之第4天及第8天,且可自免疫一次的15頭攻毒豬同時檢測出SP及NSP陽性抗體。以xMAP分別與病毒中和試驗 (VNT) 及一商品化3ABC polypeptide blocking ELISA等試驗檢測感染豬血清樣品,經比較後發現於定性檢測SP及NSP抗體有存在顯著的正相關,然於xMAP及VNT之定量比較後發現二者之相關性頗低,若以xMAP與blocking ELISA 檢測FMDV-NSP抗體之特異性分析則介於93.3 -94.9%。這些研究顯示各種方法之敏感性及特異性皆高於 90 % 以上,可作為區別診斷及免疫狀況等評估之參考,且不會與口蹄疫病毒以外的水&;#30129;性疾病如豬水&;#30129;病病毒及水&;#30129;性口炎病毒等所誘發的抗體產生交叉反應,因此即具有高度的試驗特異性。

Foot-and-mouth disease (FMD), swine vesicular disease (SVD), vesicular stomatitis (VS), and vesicular exanthema (VE) are highly contagious vesicular diseases of animal but are not able to be differentiated clinically. For the purpose of instant detecting FMD and differentiating it from the other vesicular diseases, many methods have been developed and evaluated in recent years. The structural protein VP1 gene of FMDV O/TW/1997 and the non-structural protein 3ABC gene of FMDV O/TW/1999 were constructed, respectively, into expression vectors, which were based on an Escherichia coli expression system. Subsequently, monoclonal antibodies were generated by immunizing mice with the recombinant proteins, and they were employed to develop the complex interface measurement platforms for FMDV tests. Plate and microsphere formats were developed and evaluated for their abilities in antibody detection from serum samples against structural protein (SP-VP1) and non-structural protein (NSP-3ABC) of the FMDV. In those studies, the sandwich enzyme-linked immunosorbent assay (ELISA), singleplex Luminex and multipex Luminex (xMAP) were developed for rapid detection of the FMD antibodies. In the first study, the developed sandwich ELISA demonstrated a diagnostic sensitivity (Dsn) of 98.4 % and a diagnostic specificity (Dsp) of 100 % for naive and vaccinated pigs; the detection ability of the assay was comparable with those of PrioCHECK and UBI kits. There were 97.5, 93.4 and 66.6 % agreement between the results obtained from our sandwich ELISA and those obtained from the PrioCHECK, UBI and CHEKIT kits, respectively. The kappa statistics between our ELISA and the kits were 0.95, 0.87 and 0.37, respectively. Moreover, antibodies to nonstructural proteins of the serotypes A, C, Asia 1, SAT 1, SAT 2 and SAT 3 were also detected in sera of infected cattle. In the secondary study, sera from 64 infected, 307 vaccinated, and 280 naive pigs were tested for the FMDV-NSP antibody by the sigleplex Luminex assay. The Dsn of the assay was 100%. The Dsp of the assay was 98.7% in vaccinated pigs and 97.5% to 100% in naive pigs. Agreement between the results from the singleplex Luminex and those from a 3ABC polypeptide blocking ELISA was 96.3%, and kappa statistics gave a value of 0.92. The singleplex Luminex can detect the immune response to NSP-3ABC in swine as early as eight days post-infection as same as sandwich ELISA. Moreover, the NSP-3ABC antibody in all of the 15 vaccinated but unprotected pigs which presented vesicular lesions were detected by the singleplex Luminex assay, and the antibodies in 11 of the 15 pigs were detected this antibody by the sandwich ELISA. In the third study, an xMAP was optimized to detected antibodies to SP-VP1 and NSP-3ABC of the FMD virus simultaneously in a single serum sample. To detect SP antibodies in 661 sera from infected, naive pigs and vaccinated pigs, the DSn and DSp of the xMAP were 90.0-98.7% and 93.0-96.5%, respectively. To detect NSP antibodies, the DSn was 90% and the DSp ranged from 93.3% to 99.1%. The xMAP can detect the immune response to SP and NSP as early as 4 and 8 dpi, respectively, in the experimentally infected pigs Moreover, the SP and NSP antibodies in 15 vaccinated but unprotected pigs were detected by the xMAP. Comparing the abilities in detecting the SP and NSP antibodies in the sera of infected samples, the results from the xMAP had high positive correlation with those from the virus neutralization test (VNT) and commercially available 3ABC polypeptide blocking ELISA. However, the results of xMAP had no quantitative relationship with those of the VNT. Furthermore, the specificity was 93.3-94.9% with the blocking ELISA for detecting the FMDV-NSP antibody. These studies showed that the sensitivity and specificity of the methods developed are higher than 90%, which can be as references for diagnosis and assessment of the immune status. Furthermore, the specificities of these assays were also highlighted by the absence of cross-reactions generated by antibodies against the SVDV and VSV at different titers.

Certificate
Acknowledgements
Contents I
Abstract in Chinese VII
Abstract in English IX
Chapter 1. General Introduction 1
Chapter 2. Literature review 7
2.1 Foot-mouth-disease (FMD) 7
2.1.1 History 7
2.1.2 Susceptible species 7
2.1.3 Pathogenesis 7
2.1.4 Infection routes 8
2.1.5 Transmission 9
2.1.6 Clinical signs 10
2.1.7 Subclinical and persistent infections 11
2.2 Foot-mouth-disease virus (FMDV) 12
2.2.1 Genome 12
2.2.2 Structure of viral particle 13
2.3 Characteristics and functions of viral proteins 14
2.3.1 Structural protein VP1 (1D) 14
2.3.2 Structural protein VP2 (1B) 14
2.3.3 Structural protein VP3 (1C) 15
2.3.4 Structural protein VP4 (1A) 15
2.3.5 Non-structural protein L 16
2.3.6 Non-structural protein 2A 17
2.3.7 Non-structural protein 2B 17
2.3.8 Non-structural protein 2C 17
2.3.9 Non-structural protein 3A 18
2.3.10 Non-structural protein 3B 18
2.3.11 Non-structural protein 3C 19
2.3.12 Non-structural protein 3D 20
2.4 Replication of FMDV in host cell 20
2.4.1 Virus entry 20
2.4.2 Proliferation of viral RNA and assembly of progeny virus 21
2.4.3 Virus release 21
2.5 Serotype-specific of epidemiological characteristics 21
2.5.1 Serotype O 22
2.5.2 Serotype A 22
2.5.3 Serotype C 22
2.5.4 Serotype Asia 1 23
2.5.5 Serotype SAT 1, 2, 3 23
2.6 Laboratory diagnosis 23
2.6.1 Virus neutralization test (VNT) 23
2.6.2 Virus isolation 24
2.6.3 Reverse transcription-polymerase chain reaction (RT-PCR) 25
2.6.4 Reverse transcription loop-mediated isothermal amplification
(RT-LAMP) 25
2.6.5 Enzyme linked immunosorbent assay (ELISA) 26
2.6.6 Differentiation between infection and vaccinated animals (DIVA) 26
2.6.7 Chromatographic strip test 27
2.6.8 Luminex assay 28
Chapter 3. Differentiation of foot-and-mouth disease-infected pigs from
vaccinated pigs using antibody-detecting sandwich ELISA 30
Introduction 31
Materials and Methods 32
Sera 32
Virus neutralization test (VNT) 32
Expression, purification and identification of the FMDV 3ABC
polypeptide 32
Mouse immunization and production of a mAb against 3ABC 33
Sandwich ELISA 33
Commercially available ELISA kits for the detection of antibodies to FMDV NSPs 33
Results 33
Isotype of the mAb 33
Stability of the control sera in the sandwich ELISA 33
Determination of the cut-off value in sandwich ELISA 33
Kinetics of the antibody response to 3ABC 34
Comparison of the sandwich ELISA and the commercially available
ELISA kits 34
Identification of recombinant protein to other FMDV serotypes using
bovine antiserum 35
Specificity evaluated using antisera against SVDV and VSV 35
Discussion 35
Tables 34-35
Figs 33-35
References 37
Chapter 4. Development of a Luminex assay for the detection of swine
antibodies to non-structural proteins of foot-and-mouth disease virus 39
Introduction 40
Materials and Methods 41
Serum sample 41
Virus neutralization test (VNT) 41
Preparation of 3ABC-coupled microspheres 41
Single-signature Luminex assays 42
Tests for comparison 42
Detection of vaccinated but infected pigs by Luminex assay 43
Results 43
Titration of neutralizing antibodies in experimentally infected Pigs 43
Assessment of microsphere coupling efficiency 43
Determination of cutoff value for the Luminex assay 43
Inter-assay repeatability 44
Comparison of the Luminex assay with the commercially available
ELISA and in-house methods in detecting serially sampled sera 44
Diagnostic specificity of the Luminex assay in vaccinated Pigs 44
Diagnostic sensitivity and specificity of the Luminex assay 44
Detection of 3ABC NSP antibody in bovine antisera 45
Detection of 3ABC NSP antibody in sera against FMDV O/TW/1997
And FMDV O/TW/1999 strains 45
Analytical specificity of the Luminex assay 45
Detection of FMDV infection in vaccinated animals 45
Discussion 45
Tables 43-46
Figs 43-45
References 47
Chapter 5. Development of a multiplex Luminex assay for detecting
swine antibodies to structural and non-structural proteins of
foot-and-mouth disease virus in Taiwan 49
Introduction 51
Materials and Methods 51
Serum samples 51
Virus neutralization test (VNT) 52
Expression of recombinant FMD SP and NSP in E. coli 52
SDS-PAGE and Western blotting 53
Preparation of recombinant protein coupled microspheres 53
xMAP assays 54
Comparison of the xMAP to other assays 54
Results 54
Titration of neutralizing antibodies in experimentally infected pigs 54
Expression of SP and NSP polypeptides in E. coli 54
Assessment of microsphere coupling efficiency 55
Determination of the cutoff value for the xMAP assay 55
Comparison of the xMAP with the commercially available ELISA and
VNT in detecting sequentially sampled sera 55
Diagnostic sensitivity and specificity to vaccinated pigs of the xMAP 55
Diagnostic sensitivity and specificity of the xMAP in experimental pigs 56
Detection of SP and NSP antibodies in sera against FMDV O/TW/1997
and O/TW/1999 strains 56
Analytical specificity of the xMAP against SVDV antibody 57
Detection of VP1 SP and 3ABC NSP antibodies in bovine antisera 57
Detection of FMDV infection in vaccinated animals 57
Discussion 58
Tables 52-59
Figs 54-58
Reference 60
Chapter 6. General discussion, Conclusion and Perspectives 62
References 67
Appendix 87


Acharya, R., Fry, E., Stuart, D., Fox, G., Rowlands, D., Brown, F., 1989. The three-dimensional structure of foot-and-mouth disease virus at 2.9 A resolution. Nature. 337(6209), 709–716.
Aidaros, H.A., 2002. Regional status and approaches to control and eradication of foot and mouth disease in the Middle East and North Africa. Rev. Sci. Tech. 21, 451–458.
Aldabe, R., Irurzun, A., Carrasco, L., 1997. Poliovirus protein 2BC increases cytosolic free calcium concentrations. J. Virol. 71, 6214–6217.
Alexandersen, S., Brotherhood, I., Donaldson, A.I., 2002a. Natural aerosol transmission of foot-and-mouth disease virus to pigs: minimal infectious dose for strain O1 Lausanne. Epidemiol. Infect. 128, 301–312.
Alexandersen, S., Zhang, Z., Donaldson, A.I., 2002b. Aspects of the persistence of foot-and-mouth disease virus in animals–the carrier problem. Microbes. Infect. 4, 1099–1110.
Alexandersen, S., Zhang, Z., Reid, S.M., Hutchings, G.H., Donaldson, A.I., 2002c. Quantities of infectious virus and viral RNA recovered from sheep and cattle experimentally infected with foot-and-mouth disease virus O UK 2001. J. Gen. Virol. 83, 1915–1923.
Alexandersen, S., Kitching, R.P., Mansley, L.M., Donaldson, A.I., 2003a. Clinical and
laboratory investigations of five outbreaks of foot-and-mouth disease during the 2001 epidemic in the United Kingdom. Vet. Rec. 152, 489–496.
Alexandersen, S., Quan, M., Murphy, C., Knight, J., Zhang, Z., 2003b. Studies of quantitative parameters of virus excretion and transmission in pigs and cattle experimentally infected with foot-and-mouth disease virus. J. Comp. Pathol. 129, 268–282.
Alexandersen, S., Mowat, N., 2005. Foot-and-mouth disease: host range and pathogenesis. Curr. Top. Microbiol. Immunol. 288, 9–42.
Armstrong, R.M., Cox, S.J., Aggarwal, N., Mackay, D.J., Davies, P.R., Hamblin, P.A., Dani, P., Barnett, P.V. and Paton, D.J., 2005. Detection of antibody to the foot-and-mouth disease virus (FMDV) non-structural polyprotein 3ABC in sheep by ELISA. J. Virol. Methods 125, 153–163.
Ayers E, Cameron E, Kemp R, Leitch H, Mollison A, Muir I, Reid H, Smith D, Sproat J., 2001. Oral lesions in sheep and cattle in Dumfries and Galloway. Vet. Rec. 148, 720–723.
Bachrach, H.L., 1968. Foot-and-mouth disease. Annu. Rev. Microbiol. 22:201-244.
Bastos, A.D., Boshoff, C.I., Keet, D.F., Bengis, R.G., Thomson, G.R., 2000. Natural transmission of foot-and-mouth disease virus between African buffalo (Syncerus caffer) and impala (Aepyceros melampus) in the Kruger National Park, South Africa. Epidemiol Infect. 124, 591–598.
Bastos, A.D., Haydon, D.T., Forsberg, R., Knowles, N.J., Anderson, E.C., Bengis, R.G., Nel, L.H., Thomson, G.R., 2001. Genetic heterogeneity of SAT-1 type foot-and-mouth disease viruses in southern Africa. Arch. Virol. 146, 1537–1551.
Bastos, A.D., Anderson, E.C., Bengis, R.G., Keet, D.F.,Winterbach, H.K., Thomson, G.R., 2003a. Molecular epidemiology of SAT3-type foot-and-mouth disease. Virus genes 27, 283–290.
Batschelet, E., Domingo, E. and Weissmann, C., 1976. The proportion of revertant and mutant phage in a growing population, as a function of mutation and growth rate. Gene 1, 27–32.
Beard, C.W. and Mason, P.W., 2000. Genetic determinants of altered virulence of Taiwanese foot-and-mouth disease virus. J. Virol. 74, 987–991.
Belsham, G.J., Abrams, C.C., King, A.M., Roosien, J., Vlak, J.M., 1991. Myristoylation of foot-and-mouth disease virus capsid protein precursors is independent of other viral proteins and occurs in both mammalian and insect cells. J. Gen. Virol. 72 ( Pt 3), 747–751.
Belsham, G.J., 2005. Translation and replication of FMDV RNA. Curr. Top. Microbiol. Immunol. 288, 43–70.
Bergmann, I.E., de Mello, P.A., Neitzert, E., Beck, E., Gomes, I., 1993. Diagnosis of persistent aphthovirus infection and its differentiation from vaccination response in cattle by use of enzyme-linked immunoelectrotransfer blot analysis with bioengineered nonstructural viral antigens. Am. J. Vet. Res. 54 (6), 825–831.
Bergmann, I.E. and Malirat, V., 1995. Performance of a rapid enzyme-linked immunoelectrotransfer blot assay for detection of cattle exposed to foot-and-mouth disease virus. Bol. Centr. Panam. Fiebre. Aftosa. 61, 40–44.
Bergmann, I.E., Malirat, V., Neitzert, E., Beck, E., Panizzutti, N., Sanchez, C., Falczuk, A., 2000. Improvement of a serodiagnostic strategy for foot-and-mouth disease virus surveillance in cattle under systematic vaccination: a combined system of an indirect ELISA-3ABC with an enzyme-linked immunoelectrotransfer blot assay. Arch. Virol. 145 (3), 473–489.
Bergmann, I.E., Neitzert, E., Malirat, V., Ortiz, S., Colling, A., Sanchez, C., Correa, Melo. E., 2003. Rapid serological profiling by enzyme-linked immunosorbent assay and its use as an epidemiological indicator of foot-and-mouth disease viral activity. Arch. Virol. 148 (5), 891–901.
Bergmann, I.E., Neitzert, E., Malirat, V., de Mendonca Campos, R., Pulga, M., Muratovik, R., Quintino, D., Morgados, J.C., Oliveira, M. and de Lucca, Neto. D., 2006. Development of an inhibition ELISA test for the detection of non-capsid polyprotein 3ABC in viral suspensions destined for inactivated foot-and-mouth disease vaccines. Dev. Biol. (Basel). 126, 241–250.
Biswas, S., Sanyal, A., Hemadri, D., Tosh, C., Mohapatra, J.K., Manoj Kumar, R., Bandyopadhyay, S.K., 2006. Sequence analysis of the non-structural 3A and 3C protein-coding regions of foot-and-mouth disease virus serotype Asia1 &;#64257;eld isolates from an endemic country. Vet. Microbiol. 116, 187–193.
Bittle, J.L., Houghten, R.A., Alexander, H., Shinnick, T.M., Sutcliffe, J.G., Lerner, R.A., Rowlands, D.J., Brown, F., 1982. Protection against foot-and-mouth disease by immunization with a chemically synthesized peptide predicted from the viral nucleotide sequence. Nature 298, 30–33.
Borca, M.V., Pacheco, J.M., Holinka, L.G., Carrillo, C., Hartwig, E., Garriga, D., Kramer, E., Rodriguez, L., Piccone, M.E., 2012. Role of arginine-56 within the structural protein VP3 of foot-and-mouth disease virus (FMDV) O1 Campos in virus virulence. Virology 422(1), 37–45.
Bouma, A., Dekker, A., 2002. Foot and mouth disease in (meat) calves: clinical signs and viral shedding. Tijdschr. Diergeneeskd. 127, 83–84.
Bronsvoort, B.M., Radford, A.D., Tanya, V.N., Nfon, C., Kitching, R.P., Morgan, K.L., 2004. Molecular epidemiology of foot-and-mouth disease viruses in the Ada-mawa province of Cameroon. J. Clin. Microbiol. 42, 2186–2196.
Bronsvoort, B.M., Toft, N., Bergmann, I.E., Sorensen, K.J., Anderson, J., Malirat, V., Tanya, V.N., Morgan, K.L., 2006. Evaluation of three 3ABC ELISAs for foot-and-mouth disease non-structural antibodies using latent class analysis. BMC Vet. Res. 2, 30.
Burrows, R., 1968. Excretion of foot and mouth virus prior to the development of lesions. Vet. Rec. 82, 387–388.
Callahan, J.D., Brown, F., Osorio, F.A., Sur, J.H., Kramer, E., Long, G.W., Lubroth,
J., Ellis, S.J., Shoulars, K.S., Gaffney, K.L., Rock, D.L., Nelson, W.M., 2002. Use of a portable real-time reverse transcriptase-polymerase chain reaction assay for rapid detection of foot-and-mouth disease virus. J. Am. Vet. Med. Assoc. 220(11), 1636-1642.
Capozzo, A.V.E., Burke, D.J., Fox, J.W., Bergmann, I.E., La Torre, J.L., Grigera, P.R., 2002. Expression of foot-and-mouth disease virus non-structural polypeptide 3ABC induces histone H3 cleavage in BHK21 cells. Virus Res. 90, 91–99.
Carrillo, C., Tulman, E.R., Delhon, G., Lu, Z., Carreno, A., Vagnozzi, A., Kutish, G.F., Rock, D.L., 2005. Comparative genomics of foot-and-mouth disease virus. J. Virol. 79, 6487–6504.
Chang, H.Y., Du, J.Z., Cong, G.Z., Shao, J.J., Lin, T., Xie, Q.G., 2007. Genome sequencing and analysis of foot-and-mouth disease virus Asia1/YNBS/58 strain. Bing. Du. Xue. Bao. 23, 407–411.
Chenard, G., Miedema, K., Moonen, P., Schrijver, R.S., Dekker, A., 2003. A solid-phase blocking ELISA for detection of type O foot-and-mouth disease virus antibodies suitable for mass serology. J. Virol. Methods 107, 89–98.
Chen, T.H., Pan, C.H., Jong, M.H., Lin, H.M., Huang, Y.L., Hsiung, K.P., Chao, P.H. and Lee, F., 2009. Development of a chromatographic strip assay for detection of porcine antibodies to 3ABC non-structural protein of foot-and-mouth disease virus serotype O. J. Vet. Med. Sci. 71, 703–708.
Chen, T.H., Lee, F., Lin, Y.L., Dekker, A., Chung, W.B., Pan, C.H., Jong, M.H., Huang, C.C., Lee, M.C., Tsai, H.J., 2011. Differentiation of foot-and-mouth disease-infected pigs from vaccinated pigs using antibody-detecting sandwich ELISA. J. Vet. Med. Sci. 73 (8), 977–984.
Chen, T.H., Lee, F., Lin, Y.L., Pan, C.H., Shih, C.N., Lee, M.C., Tsai, H.J., 2013. Development of a Luminex assay for the detection of swine antibodies to non-structural proteins of foot-and-mouth disease virus. J. Immunol. Methods 396 (1–2), 87–95.
Cheng, I.C., Liang, S.M., Tu, W.J., Chen, C.M., Lai, S.Y., Cheng, Y.C., Lee, F., Huang, T.S., Jong, M.H., 2006. Study on the porcinophilic foot-and-mouth disease virus I. production and characterization of monoclonal antibodies against VP1. J. Vet. Med. Sci. 68, 859–864.
Chow, M., Newman, J. F., Filman, D., Hogle, J. M., Rowlands, D. J., and Brown, F., 1987. Myristylation of picornavirus capsid protein VP4 and its structural signi&;#64257;cance. Nature 327, 482–486.
Chung, W.B., Sorensen, K., J., Liao, P.C., Yang, P.C. and Jong, M.H., 2002. Differentiation of foot-and-mouth disease virus-infected from vaccinated pigs by enzyme-linked immunosorbent assay using non-structural protein 3AB as the antigen and application to an eradication program. J. Clin. Microbiol. 40, 2843–2848.
Clavijo, A., Wright, P., Kitching, P., 2004a. Developments in diagnostic techniques for differentiating infection from vaccination in foot-and-mouth disease. Vet. J. 167(1), 9–22.
Clavijo, A., Zhou, E.M., Hole, K., Galic, B. and Kitching, P., 2004b. Development and use of a biotinylated 3ABC recombinant protein in a solid-phase competitive ELISA for the detection of antibodies against foot-and-mouth disease virus. J. Virol. Methods 120, 217–227.
Clavijo, A., Hole, K., Li, M. and Collignon, B., 2006. Simultaneous detection of antibodies to foot-and-mouth disease non-structural proteins 3ABC, 3D, 3A and 3B by a multiplexed Luminex assay to differentiate infected from vaccinated cattle. Vaccine 24, 1693–1704.
Codorean, E., Nichita, C., Albulescu, L., R&;#259;ducan, E., Popescu, I. D., Lonit&;#259;, A. C., Albulescu, R., 2010. Correlation of XMAP and ELISA cytokine profiles; development and validation for immunotoxicological studies in vitro. Roum. Arch. Microbiol. Immunol. 69(1), 13–19.
Crowther, J.R., Farias, S., Carpenter, W.C., Samuel, A.R., 1993. Identification of a fifth neutralizable site on type O foot-and-mouth disease virus following characterization of single and quintuple monoclonal antibody escape mutants. J. Gen. Virol. 74, 1547–1553.
Dawe, P.S., Flanagan, F.O., Madekurozwa, R.L., Sorensen, K.J., Anderson, E.C., Foggin, C.M., Ferris, N.P., Knowles, N.J., 1994. Natural transmission of foot-and-mouth disease virus fromAfrican buffalo (Syncerus caffer) to cattle in a wildlife area of Zimbabwe. Vet. Rec. 134, 230–232.
De Diego, M., Brocchi, E., Mackay, D. and De Simone, F., 1997. The non-structural polyprotein 3ABC of foot-and-mouth disease virus as a diagnostic antigen in ELISA to differentiate infected from vaccinated cattle. Arch. Virol. 142, 2021–2033.
Deitz, S.B., Dood, D.A., Cooper, S., Parham, P., Kirkegaard, K., 2000. MHC I-dependent antigen presentation is inhibited by poliovirus protein 3A. Proc. Natl. Acad. Sci. U. S. A. 97, 13790–13795.
Donaldson, A.I., 1972. The in&;#64258;uence of relative humidity on the aerosol stability of different strains of foot-and-mouth disease virus suspended in saliva. J. Gen. Virol. 15, 25–33.
Donaldson, A.I., Gibson, C.F., Oliver, R., Hamblin, C., Kitching, R.P., 1987. Infection of cattle by airborne foot-and-mouth disease virus: minimal doses with O1 and SAT 2 strains. Res. Vet. Sci. 43, 339–346.
Donaldson, A.I., 1997. Risks of spreading foot and mouth disease through milk and dairy products. Rev. Sci. Tech. 16, 117–124.
Donnelly, M.L.L., Gani, D., Flint, M., Monaghan, S., Ryan, M.D., 1997. The cleavage activities of aphthovirus and cardiovirus 2A proteins. J. Gen. Virol. 78, 13–21.
Drake, J.W. and Holland, J.J., 1999. Mutation rates among RNA viruses. Proc. Natl. Acad. Sci. U.S.A. 96, 13910–13913.
Dunbar, S.A., 2006. Applications of Luminex xMAP technology for rapid, high-throughput multiplexed nucleic acid detection. Clin. Chim. Acta 363 (1–2), 71-82.
Escarmis, C., Lazaro, E. and Manrubia, S.C., 2006. Population bottlenecks in quasispecies dynamics. Curr. Top. Microbiol. Immunol. 299: 141–170.
Enserink,M., 2007. Biosecurity. Reports blame animal health lab in foot-and-mouth
whodunit. Science 317, 1486.
Fulton, R.J., McDade, R.L., Smith, P.L., Kienker, L.J., Kettman, JR. Jr., 1997. Advanced multiplexed analysis with the FlowMetrix system. Clin. Chem. 43 (9), 1749–1756.
Garland, A. J. M. &; Donaldson, A. I., 1990. Foot and mouth disease. Surveillance 17(4), 6–8.
Gibbens, J.C., Sharpe, C.E., Wilesmith, J.W., Mansley, L.M., Michalopoulou, E., Ryan, J.B., Hudson, M., 2001. Descriptive epidemiology of the 2001 foot-and-mouth disease epidemic in Great Brita: the &;#64257;rst &;#64257;ve months. Vet. Rec. 149, 729–743.
Gladue, D.P., O''Donnell, V., Baker-Branstetter, R., Holinka, L.G., Pacheco, J.M., Fernandez-Sainz, I., Lu, Z., Brocchi, E., Baxt, B., Piccone, M.E., Rodriguez, L., Borca, M.V., 2012. Foot-and-Mouth Disease Virus Nonstructural Protein 2C Interacts with Beclin1, Modulating Virus Replication. J. Virol. 86(22), 12080–12090.
Golde, W.T., Nfon, C.K., Toka, F.N., 2008. Immune evasion during foot-and-mouth disease virus infection of swine. Immunol. Rev. 225, 85–95.
Grubman, M.J. and Baxt, B., 2004. Foot-and-mouth disease. Clin. Microbiol. Rev. 17, 465–493.
Gulbahar, M.Y., Davis, W.C., Guvenc, T., Yarim, M., Parlak, U., Kabak, Y.B., 2007. Myocarditis associated with foot-and-mouth disease virus type O in lambs. Vet. Pathol. 44, 589–599.
Hartnett, E., Adkin, A., Seaman, M., Cooper, J., Watson, E., Coburn, H., England, T.,
Marooney, C., Cox, A., Wooldridge, M., 2007. A quantitative assessment of the risks from illegally imported meat contaminated with foot and mouth disease virus to Great Britain. Risk. Anal. 27, 187–202.
Haydon, D.T., Bastos, A.D., Knowles, N.J. and Samuel, A.R., 2001. Evidence for positive selection in foot-and-mouth disease virus capsid genes from field isolates. Genetics 157, 7–15.
Holzhauer, M., Verhoeff, J., van Wuijckhuise, L.A., 2001. The clinical symptoms of foot and mouth disease in the first con&;#64257;rmed cases at five different farms in the Netherlands. Tijdschr. Diergeneeskd. 126, 282–285.
Horsington, J., Zhang, Z., 2007. Analysis of foot-and-mouth disease virus replication using strand-speci&;#64257;c quantitative RT-PCR. J. Virol. Methods 144, 149–155.
Huang, C.C., Lee, F., Tu, W.J., Lee, S.H., Huang, T.S., Lin, Y.L., Jong, M.H. and Lin, S.Y., 2002. Anti-3AB antibodies in the Chinese yellow cattle infected by the O/Taiwan/99 foot-and-mouth disease virus. Vet. Microbiol. 84, 317–326.
Hutber, A.M., Kitching, R.P., Conway, D.A., 1999. Predicting the level of herd infection for outbreaks of foot-and-mouth disease in vaccinated herds. Epidemiol. Infect. 122, 539–544.
Hyslop, NS., 1965. Airborne infection with the virus of foot-and-mouth disease. J. Comp. Pathol. 75, 119–126.
Inoue, T., Parida, S., Paton, D.J., Linchongsubongkoch, W., Mackay, D., Oh, Y., Aunpomma, D., Gubbins, S. and Saeki, T., 2006. Development and evaluation of an indirect enzyme-linked immunosorbent assay for detection of foot-and-mouth disease virus nonstructural protein antibody using a chemically synthesized 2B peptide as antigen. J. Vet. Diagn. Investig. 18, 545–552.
Islam, M.A., Rahman, M.M., Adam, K.H., Marquardt, O., 2001. Epidemiological implications of themolecular characterization of foot-and-mouth disease virus isolated between 1996 and 2000 in Bangladesh. Virus Genes 23, 203–210.
Jackson, A.L., O’Neill, H., Maree, F., Blignaut, B., Carrillo, C., Rodriguez, L. and Haydon, D.T., 2007. Mosaic structure of foot-and-mouth disease virus genomes. J. Gen. Virol. 88, 487–492.
Jamal, S.M., Belsham, G.J., 2013. Foot-and-mouth disease: past, present and future. Vet. Res. 44 : 116.
Jensen, M.J., Moore, D.M., 1993. Phenotypic and functional characterization of mouse attenuated and virulent variants of foot-and-mouth disease virus type O1 Campos. Virology 193 (2), 604–613.
Kellar, K.L., Iannone, M.A., 2002. Multiplexed microsphere-based flow cytometric assays. Exp. Hematol. 30 (11), 1227.
Kitching, R.P., 2002. Clinical variation in foot and mouth disease: cattle. Rev. Sci. Tech. 21, 499–504.
Kitching, R.P., 2005. Global epidemiology and prospects for control of foot-and-mouth disease. Curr. Top. Microbiol. Immunol. 288, 133–148.
Kitching, R.P. Alexandersen, S., 2002. Clinical variation in foot and mouth disease: pigs. Rev. Sci. Tech. 21, 513–518.
Kitson, J.D., McCahon, D., Belsham, G.J., 1990. Sequence analysis of monoclonal antibody resistant mutants of type O foot and mouth disease virus: evidence for the involvement of the three surface exposed capsid proteins in four antigenic sites. Virology 179, 26–34.
Klein, J., Parlak, U., Ozyoruk, F., Christensen, L.S., 2006. The molecular epidemiology of foot-and-mouth disease virus serotypes A and O from1998 to 2004 in Turkey. BMC. Vet. Res. 2, 35.
Klein, J., 2009. Understanding the molecular epidemiology of foot-and-mouth-disease virus. Infect. Genet. Evol. 9(2), 153–161.
Knowles, N.J., Davies, P.R., Henry, T., O_Donnell, V., Pacheco, J.M., Mason, P.W., 2001. Emergence in Asia of foot-and-mouth disease viruses with altered host range: characterization of alterations in the 3A protein. J. Virol. 75, 1551–1556.
Knowles, N.J. and Samuel, A.R., 2003. Molecular epidemiology of foot-and-mouth disease virus. Virus Res. 91, 65 – 80.
Knowles, N.J., Samuel, A.R., Davies, P.R., Midgley, R.J., Valarcher, J.F., 2005. Pandemic strain of foot-and-mouth disease virus serotype O. Emerg. Infect. Dis. 11, 1887–1893.
Konig, G.A., Palma, E.L., Maradei, E., Piccone, M.E., 2007. Molecular epidemiology of foot-and-mouth disease virus types A and O isolated in Argentina during the 2000-2002 epizootic. Vet. Microbiol. 124, 1–15.
Kweon, C.H., Ko, Y.J., Kim, W.I., Lee, S.Y., Nah, J.J., Lee, K.N., Sohn, H.J., Choi, K.S., Hyun, B.H., Kang, S.W., Joo, Y.S. and Lubroth, J., 2003. Development of a foot-and-mouth disease NSP ELISA and its comparison with differential diagnostic methods. Vaccine 21, 1409–1414.
Lama, J., Carrasco, L., 1996. Screening for membrane-permeabilizing mutants of the poliovirus protein 3AB. J. Gen. Virol. 77, 2109–2119.
Lenhoff, R.J., Naraghi-Arani, P., Thissen, J.B., Olivas, J., Carillo, A.C., Chinn, C., Rasmussen, M., Messenger, S.M., Suer, L.D., Smith, S.M., Tammero, L.F., Vitalis, E.A., Slezak, T.R., Hullinger, P.J., Hindson, B.J., Hietala, S.K., Crossley, B.M., McBride, M.T., 2008. Multiplexed molecular assay for rapid exclusion of foot-and-mouth disease. J. Virol. Methods 153 (1), 61–69.
Lin, Y.L., Jong, M.H., Huang, C.C., Shieh, H.K., Chang, P.C., 2010. Genetic and antigenic characterization of foot-and-mouth disease viruses isolated in Taiwan between 1998 and 2009. Vet. Microbiol. 145 (1–2), 34–40.
Loeffler, F. and Frosch, P., 1897. “Summarischer bericht uber die ergebnisse der untersuchungen zur erforschung dermaulund klauenseuche,” Zentbl Bakteriol Parasitenkd Infektionskr Hyg. Abt. I. 22, 257–259.
Longjam, N., Deb, R., Sarmah, A. K., Tayo, T., Awachat, V.B., Saxena, V. K., 2011. A Brief Review on Diagnosis of Foot-and-Mouth Disease of Livestock: Conventional to Molecular Tools. Vet. Med. Int. 2011, 905768.
Ma, L.N., Zhang, J., Chen, H.T., Zhou, J.H., Ding,Y.Z., Liu, Y.S., 2011. An overview on ELISA techniques for FMD. Virol. J. 8, 419.
Mackay, D.K., Forsyth, M.A., Davies, P.R., Berlinzani, A., Belsham, G.J., Flint, M. and Ryan, M.D., 1998. Differentiating infection from vaccination in foot-and-mouth disease using a panel of recombinant, non-structural proteins in ELISA. Vaccine 16, 446–459.
Mackay, D.J., Bulut, A.N., Rendle, T., Davidson, F., Ferris, N.P., 2001. A solid-phase competition ELISA for measuring antibody to foot-and-mouth disease virus. J. Virol. Methods 97, 33–48.
Mahy, B.W., 2005. Introduction and history of foot-and-mouth disease virus. Curr. Top. Microbiol. Immunol. 288, 1– 8.
Madhanmohan, M., Nagendrakumar, S.B, Manikumar, K., Yuvaraj, S., Parida, S., Srinivasan, V.A., 2013. Development and evaluation of a real-time reverse transcription-loop-mediated isothermal amplification assay for rapid serotyping of foot-and-mouth disease virus. J. Virol. Methods 187(1), 195–202.
Marquardt, O., Adam, K.H., Straub, O.C., 1991. Detection and localization of single-base sequence differences in foot-and-mouth disease virus genomes by the RNase mismatch cleavage method. J. Virol. Methods 33 (3), 267–282.
Mason, P.W., Grubman, M.J., Baxt, B., 2003. Molecular basis of pathogenesis of FMDV. Virus Res. 91, 9–32.
Mateu, M.G., Camarero, J.A., Giralt, E., Andreu, D., Domingo, E., 1995. Direct evaluation of the immunodominance of a major antigenic site of foot-and-mouth disease virus in a natural host. Virology 206, 298–306.
Mattion, N., Konig, G., Seki, C., Smitsaart, E., Maradei, E., Robiolo, B., Duffy, S., Leon, E., Piccone, M., Sadir, A., Bottini, R., Cosentino, B., Falczuk, A., Maresca, R., Periolo, O., Bellinzoni, R., Espinoza, A., Torre, J.L. and Palma, E.L., 2004. Reintroduction of foot-and-mouth disease in Argentina: characterisation of the isolates and development of tools for the control and eradication of the disease. Vaccine 22, 4149–4162.
McCahon, D., Crowther, J.R., Belsham, G.J., Kitson, J.D., Duchesne, M., Have, P., Meloen, R.H., Morgan, D.O., De, Simone. F., 1989. Evidence for at least four antigenic sites on type O foot-and-mouth disease virus involved in neutralization; identification by single and multiple site monoclonal antibody-resistant mutants. J. Gen. Virol. 70, 639–645.
Moffat, K., Howell, G., Knox, C., Belsham, G.J., Monaghan, P., Ryan, M.D. and Wileman, T., 2005. Effects of foot-and-mouth disease virus nonstructural proteins on the structure andfunction of the early secretory pathway: 2BC but not 3A blocks endoplasmic reticulum-to-Golgi transport. J. Virol. 79, 4382–4395.
Mohapatra, J.K., Sanyal, A., Hemadri, D., Tosh, C., Sabarinath, G.P., Venkataramanan,
R., 2002. Sequence and phylogenetic analysis of the L and VP1 genes of foot-and- mouth disease virus serotype Asia1. Virus Res. 87, 107–118.
Mohapatra, J.K., Sanyal, A., Hemadri, D., Tosh, C., Sabarinath, G.P., Manoj Kumar, R., Venkataramanan, R., Bandyopadhyay, S.K., 2004. Sequence variability in the structural protein-encoding region of foot-and-mouth disease virus serotype Asia1 &;#64257;eld isolates. Res. Vet. Sci. 77, 153–161.
Muthuchelvan, D., Venkataramanan, R., Hemadri, D., Sanyal, A., Tosh, C., 2001. Sequence analysis of recent Indian isolates of foot-and-mouth disease virus serotypes O, A and Asia 1 from clinical materials. Acta. Virol. 45, 159–167.
Newman, J.F.E., Piatti, P.G., Ryan, M.D., Brown, F., 1994. Function of minor polypeptides in foot-and-mouth disease virus and poliovirus. Trends Microbiol. 2(12), 494–497.
O''Donnell, V.K., Smitsaart, E., Cetra, B., Duffy, S., Finelli, J., Boyle, D., Draghi, G., Fondevila, N., Schudel, A.A., 1997. Detection of virus infection-associated antigen and 3D antibodies in cattle vaccinated against foot and mouth disease. Rev. Sci. Tech. 16 (3), 833–840.
Oem, J.K., Ferris, N.P., Lee, K.N., Joo, Y.S., Hyun, B.H., Park, J.H., 2009. Simple and rapid lateral flow assay for the detection of foot and mouth disease virus. Clin. Vaccine Immunol. 16 (11), 1660–1664.
Oliver, K.G., Kettman, J.R., Fulton, R.J., 1998. Multiplexed analysis of human cytokines by use of the FlowMetrix system. Clin. Chem. 44, 2057–2060.
Paton, D.J., de Clercq, K., Greiner, M., Dekker, A., Brocchi, E., Bergmann, I., Sammin, D.J., Gubbins, S. and Parida, S., 2006. Application of non-structural protein antibody tests in substantiating freedom from foot-and-mouth disease virus infection after emergency vaccination of cattle. Vaccine 24, 6503–6512.
Paul, A.V., Van Boom, J.H., Filippov, D., Wimmer, E., 1998. Protein-primed RNA synthesis by purified poliovirus RNA polymerase. Nature 393, 280–284.
Pereira, H.G., 1981. Foot and Mouth Disease, Academic Press, London.
Perkins, J., Clavijo, A., Hindson, B.J., Lenhoff, R.J., McBride, M.T., 2006. Multiplexed detection of antibodies to nonstructural proteins of foot-and-mouth disease virus. Anal. Chem. 78, 5462–5468.
Perkins, J., Clavijo, A., Ortiz, J.I., Salo, T.J., Holland, H.J., Hindson, B.J., McBride, M.T., 2007a. Toward a multiplexed serotyping immunoassay for foot-and-mouth disease virus. J. Vet. Diagn. Invest. 19 (2), 180–184.
Perkins, J., Parida, S., Clavijo, A., 2007b. Use of a standardized bovine serum panel to evaluate a multiplexed nonstructural protein antibody assay for serological surveillance of foot-and-mouth disease. Clin. Vaccine Immunol. 14 (11), 1472–1482.
Reid, S.M., Hutchings, G.H., Ferris, N.P., De Clercq, K., 1999. Diagnosis of foot-and-mouth disease by RT-PCR: evaluation of primers for serotypic characterisation of viral RNA in clinical samples. J. Virol. Methods 83(1–2), 113–123.
Reid, S.M, Ferris, N.P., Bruning, A., Hutchings, G.H., Kowalska, Z. and Akerblom, L., 2001. Development of a rapid chromatographic strip test for the pen-side detection of foot-and-mouth disease virus antigen. J. Virol. Methods 96, 189–202.
Remond, M., Kaiser, C., Lebreton, F., 2002. Diagnosis and screening of foot-and-mouth disease. Comp. Immunol. Microbiol. Infect. Dis. 25(5–6), 309–320.
Richards, O.C., Ehrenfeld, E., 1998. Effects of poliovirus 3AB protein polymerase-catalyzed reaction. J Biol Chem. 273, 12832–12840.
Rueckert, R.R., 1996. Picornaviridae: The Viruses and Their Replication, Lip-pincott-Raven, Philadelphia, PA.
Ruiz-Saenz, J., Goez, Y., Tabares, W., Lopez-Herrera, A., 2009. Cellular receptors for foot -and -mouth disease virus. Intervirology. 52(4), 201–212.
Ryan, M.D., King, A.M.Q., Thomas, G.P.M., 1991. Cleavage of foot-and-mouth disease virus polyprotein is mediated by residues located within a 19 amino acid sequence. J. Gen. Virol. 72, 2727–2732.
Rybicki, Ed. "RNA Plant and Animal Virus Replication." 2009.
Sa-Carvalho, D., Rieder, E., Baxt, B., Rodarte, R., Tanuri, A.,Mason, P.W., 1997. Tissue culture adaptation of foot-and-mouth disease virus selects viruses that bind to heparin and are attenuated in cattle. J. Virol. 71 (7), 5115–5123.
Saiz, M., Gomez, S., Martnez-Salas, E., Sobrino, F., 2001. Deletion or substitution of the aphtovirus 3’NCR abrogates infectivity and viral replication. J. Gen. Virol. 82, 93–101.
Salt, J.S., 1993. The carrier state in foot and mouth disease–an immunological review. Br. Vet. J. 149, 207–223.
Samuel, A.R., Knowles, N.J., Kitching, R.P., Hafze, S.M., 1997. Molecular analysis of foot-and-mouth disease type O viruses isolated in Saudi Arabia between 1983 and 1995. Epidemiol. Infect. 119, 381–389.
Samuel, A.R., Knowles, N.J., 2001. Foot-and-mouth disease type O viruses exhibit genetically and geographically distinct evolutionary lineages (topotypes). J. Gen. Virol. 82, 609–621.
Sanyal, A., Gurumurthy, C.B., Venkataramanan, R., Hemadri, D., Tosh, C., 2003. Antigenic characterization of foot-and-mouth disease virus serotype Asia1 &;#64257;eld isolates using polyclonal and monoclonal antibodies. Vet. Microbiol. 93, 1–11.
Sanyal, A., Hemadri, D., Tosh, C., Bandyopadhyay, S.K., 2004a. Emergence of a novel
subgroupwithin thewidely circulating lineage of foot-and-mouth disease virus serotype Asia 1 in India. Res. Vet. Sci. 76, 151–156.
Sanyal, A.,Mohapatra, J.K., Kumar, R.M., Biswas, S., Hemadri, D., Tosh, C., Sabarinath, G.P., Gupta, S.K., Mittal, M., Giridharan, P., Bandyopadhyay, S.K., 2004b. Complete nucleotide sequence analysis of a vaccine strain and a &;#64257;eld isolate of foot-and-mouth disease virus serotype Asia1 with an insertion in VP1 genomic region. Acta. Virol. 48, 159–166.
Sellars, R. F., 1971. Quantitative aspects of the spread of foot and mouth disease. The Veterinary Bulletin 41(6), 431–439.
Sellers, R., Gloster, J., 2008. Foot-and-mouth disease: a reviewof intranasal infection
of cattle, sheep and pigs. Vet. J. 177 (2), 159–168.
Shen, F., Chen, P.D. and Walfield, A.M., 1999. Differentiation of convalescent animals from those vaccinated against foot-and-mouth disease by a peptide ELISA. Vaccine 17, 3039–3049.
Simmonds, P., 2006. Recombination and selection in the evolution of picornaviruses and other Mammalian positive-stranded RNA viruses. J. Virol. 80, 11124–11140.
Sorensen, K.J., Madsen, K.G., Madsen, E.S., Salt, J.S., Nqindi, J. and Mackay, D.K., 1998. Differentiation of infection from vaccination in foot-and-mouth disease by the detection of antibodies to the non-structural proteins 3D, 3AB and 3ABC in ELISA using antigens expressed in baculovirus. Arch. Virol. 143(8), 1461–1476.
Sorensen, K.J., de Stricker, K., Dyrting, K.C., Grazioli, S. and Haas, B., 2005. Differentiation of foot-and-mouth disease virus infected animals from vaccinated animals using a blocking ELISA based on baculovirus expressed FMDV 3ABC antigen and a 3ABC monoclonal antibody. Arch. Virol. 150, 805–814.
Sugimura, T., Suzuki, T., Chatchawanchonteera, A., Sinu-wonkwat, P., Tsuda, T. and Murakami, Y., 2000. Application of latex beads agglutination test for the detection of the antibodies against virus-infection-associated (VIA) antigen of foot-and-mouth disease (FMD) virus. J. Vet. Med. Sci. 62(7), 805–807.
Sutmoller, P., McVicar, J.W., Cottral, G.E., 1968. The epizootiological importance of foot-and-mouth disease carriers.I. Experimentally produced foot-and-mouth disease carriers in susceptible and immune cattle. Arch. Gesamte. Virusforsch. 23, 227–235.
Sutmoller, P., Casas, O.R., 2002. Unapparent foot and mouth disease infection (sub-
clinical infections and carriers): implications for control. Rev. Sci. Tech. 21, 519–529.
Tosh, C., Hemadri, D., Sanyal, A., 2002. Evidence of recombination in the capsid-coding region of type A foot-and-mouth disease virus. J. Gen. Virol. 83, 2455–2460.
Tully, D.C. and Fares, M. A., 2006. Unravelling selection shifts among foot-and-mouth disease virus serotypes. Evol. Bioinform. 2, 237–251.
Valarcher, J.F., Knowles, N.J., Ferris, N.P., Paton, D.J., Zakharov, V., Sherbakov, A., Shang, Y.J., Liu, Z.X., Liu, X.T., Sanyal, A., Hemadri, D., Tosh, C., Rasool, T.J., 2005. Recent spread of FMD virus serotype Asia 1. Vet. Rec. 157, 30.
Vance, L.M., Moscufo, N., Chow, M., Heinz, B.A., 1997. Poliovirus 2C region functions during encapsidation of viral RNA. Journal of Virology 71, 8759–8765.
Van Kuppeveld, F.J., Hoenderop, J.G., Smeets, R.L., Willems, P.H., Dijkman, H.B., Galama, J.M., Melchers, W.J., 1997. Coxsackievirus protein 2B modifies endoplasmic reticulum membrane and plasma membrane permeability and facilitates virus release. EMBO J. 16, 3519–3532.
Vignali, D.A., 2000. Multiplexed particle-based flow cytometric assays. J. Immunol. Methods 243 (1–2), 243–255.
Waldmann D, Kobe K, and Pyl G., 1937. Die aktive Immunisierung des Rindes gegen Maul-und Klausenseuche. Zentralbl Bakteriol.
Watson, D.S., Reddy, S.M., Brahmakshatriya, V., Lupiani, B.J., 2009. A multiplexed immunoassay for detection of antibodies against avian influenza virus. J. Immunol. Methods 340 (2), 123–131.
Willman, J.H., Hill, H.R., Martins, T.B., Jaskowski, T.D., Ashwood, E.R., Litwin, C.M., 2001. Multiplex analysis of heterophil antibodies in patients with indeterminate HIV immunoassay results. Am. J. Clin. Pathol. 115 (5), 764–769.
Wijnker, J.J., Haas, B., Berends, B.R., 2007. Removal of foot-and-mouth disease virus infectivity in salted natural casings by minor adaptation of standardized industrial procedures. Int. J. Food Microbiol. 115, 214–219.
World Organization for Animal Health (OIE), 2008. Chapter 2.1.5. Foot and mouth disease. In: Manual of Diagnostic Tests and Vaccines for Terrestrial Animals, 6th ed., OIE, Paris.
World Organization for Animal Health (OIE), 2008. Chapter 2. 8. 9. Swine vesicular disease, Manual of Diagnostic Tests and Vaccines for Terrestrial Animals, 7th ed. OIE, Paris.
World Organization for Animal Health (OIE), 2010. Chapter 2.1.19. Vesicular stomatitis, Manual of Diagnostic Tests and Vaccines for Terrestrial Animals, 7th ed. OIE, Paris.
World Organization for Animal Health (OIE), 2012. Chapter 2.1.5. Foot and mouth disease, Manual of Diagnostic Tests and Vaccines for Terrestrial Animals, 7th ed. OIE, Paris.
Wright, W.C., 1930. Hieronymi Fracastorii De Contagione et Contagiosis Morbis et Eorum Curatione. Putnams sons, New York and London.
Xie, Q.C., McCahon, D., Crowther, J.R., Belsham, G.J., McCullough, K.C., 1987. Neutralization of foot-and-mouth disease virus can be mediated through any of at least three separate antigenic sites. J. Gen. Virol. 68, 1637–1647.
Xue, M., Wang, H., Li, W., Zhou, G., Tu, Y., Yu, L., 2012. Effects of amino acid substitutions in the VP2 B-C loop on antigenicity and pathogenicity of serotype Asia1 foot-and-mouth disease virus. Virol. J. 9, 191.
Yadin, H., Brenner, J., Chai, D., Oved, Z., Hadany, Y., Kusak, A., Haimovich, M., 2007. The NSP immune response of vaccinated animals after in-&;#64257;eld exposure to FMDV. Vaccine 25 (49), 8298–8305.
Yamazaki, W., Mioulet, V., Murray, L., Madi, M., Haga, T., Misawa, N., Horii, Y., King, DP., 2013. Development and evaluation of multiplex RT-LAMP assays for rapid and sensitive detection of foot-and-mouth disease virus. J. Virol. Methods 192 (1-2), 18–24.
Yang, P.C., Chu, R.M., Chung, W.B. and Sung, H.T., 1999. Epidemiological characteristics and financial costs of the 1997 foot-and-mouth disease epidemic in Taiwan. Vet. Rec. 145, 731–734.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top