一、中文部份
1. 林慧芳(2002)。國小六年級低閱讀能力學生工作記憶與推論能力之研究。國立彰化師範大學特殊教育碩士班。2.林晏如(2011)。探討後設認知能力對國中生類比學習成果之影響-以比熱和熱平橫概念為例。國立交通大學教育研究所碩士班。3.教育部(2000):國民中小學九年一貫課程站行綱要:自然與生活科技。台北:教育
部。
4.蔡春來(2003)。探討國中生對摩擦力的迷思概念。國立台灣師範大學科學教育研究所碩士班。5.楊之明(2005)。國小中高年級學童摩擦力概念之研究。臺中師範學院自然科學教育學系碩士班。6.吳明烈(2010):UNESCO、OECD與歐盟終身學習關鑑能力之比較研究.教育政策論壇,13(1),45-75。7.簡瑋成(2011)。大學生核心就業素養之探究。教育人力與專業發展雙月刊,28(4),
75-88。
8.張珉甄(2011)。以創造性問題解決融入與「力」相關之科學遊戲的教學成效之研究。
國立台中教育大學科學應用與推廣學系科學教育碩士班。
一、 英文部份
1. Alexander, P. A. (2004). A model of domain learning: Reinterpreting expertise as a multidimensional, multistage process. In D. Y. Dai & R. J. Sternberg (Eds.), Motivation, emotion, and cognition: Integrative perspectives on
intellectual functioning and development (pp. 273–298). Mahwah, NJ: Erlbaum
2. Azevedo, R. (2005). Computer environment as metacognitive tools for enhancing learning. Educational Psychologist, 40(4), 193–197.
3. Bransford, J. D., Zech, L., & Schwartz, D. (1996). Fostering mathematical thinking in middle school students:Lessons from research. In R. J. Sternberg & T. Ben-Zeev (Eds.), The nature of mathematical thinking (pp. 203–218). Mahwah, NJ: Erlbaum.
3. Brown,A.(1987).Metacognition,executive control,self-regulation and other more mysterious mechanisms.In F.Weinter &R.Kluwe(Eds.),Metacognition,motivation,and understanding(pp.65-116).
4. Brown, A. L. (1990). Domain-specific principles affect learning and transfer in children. Cognitive Science, 14(1),107–133.
5. Bryce, D.& D. Whitebread (2012). The development of metacognitive skills: evidence from observational analysis of young children’s behavior during problem-solving. Metacognition and Learning ,7(3), 197-217.
6. Bilal, D. (2002). Children's use of the Yahooligans! Web search engine. III. Cognitive and physical behaviors on fully selfgenerated search tasks. Journal of the American Society for Information Science and Technology, 53(13), 1170-1183.
7. Bulu, S. T. & S. Pedersen (2012). Supporting problem-solving performance in a hypermedia learning environment: The role of students’ prior knowledge and metacognitive skills.Computers in Human Behavior, 28(4), 1162-1169.
8. Carretti,B.& Borella,E.&Cornoldi,C.&Beni,R.D.(2009). Role of working memory in explaining the performance of individuals with specific reading comprehension difficulties: A meta-analysis. Learning and Individual Differences,19,246-251.
9. Chang, C.-Y. (2010). Does Problem Solving = Prior Knowledge plus Reasoning Skills in Earth Science? An Exploratory Study. Research in Science Education, 40, 103–116.
10. Chi, M.T.H., Feltovich, P.J., & Glaser, R. (1981). Categorization and representation of physics problems by experts and novices. Cognitive Science, 5,121–152.
11. Cho, S., Holyoak, K. J., & Cannon, T. D. (2007). Analogical reasoning in working memory: Resources shared among relational integration, interference resolution, and maintenance. Memory & Cognition, 35, 1445–1455.
12. Clair-Thompson,H.L& Overton,T,&Bugler,M.(2012).Metal capacity and working memory in chemistry:algorithmic versus open-ended problem solving.Chemistry Education Research and Practice,13,484-489.
13. Conway, A. R. A., Kane, M. J., & Engle, R. W. (2003). Working memory capacity and its relation to general intelligence. Trends in Cognitive Sciences, 7, 547-552.
14. Copeland, D., & Radvansky, G. (2004). Working memory and syllogistic reasoning. The Quarterly Journal of Experimental Psychology A: Human Experimental Psychology, 57, 1437–1457.
15. Conway, A. R. A., et al. (2005). Working memory span tasks: A methodological review and user’s guide. Psychonomic Bulletin & Review ,12(5),769-786.
16. Engle, R. W. (2002). Working memory capacity as executive attention.Current Directions in Psychological Science, 11, 19-23.
17. Erbas, A. K. & S. Okur (2010). Researching students’ strategies, episodes, and metacognitions in mathematical problem solving. Quality & Quantity ,46(1): 89-102.
18. Elshout, J. J. (1987). Problem solving and education. In E. De Corte, H. Lodewijks, R. Parmentier, & P. Span (Eds.), Learning and instruction (pp.259-273). Oxford, UK/Leuven, Belgium: Pergamon Books/University Press.
19. Eisenberg, M. B., & Berkowitz, R. E. (1990). Information problem solving: The Big Six skills approach to library & information skills instruction. Norwood, NJ: Ablex.
20. Flavell,J.H.(1979).Metacognition and cognitive monitoring:A new area of Cognitive-Developmental Inquiry.American Psychologist,34,906-991.
21. Gagne,R.M.& Medsker,K.L.(1996).The Conditions of Learning:Training Applicaions.Harcourtt Brace College Publishers.
22. Hacker,D.J.(1997).Comprehension monitoring of written discourse across early-to-middle adolescence.Reading and Writing,9,207-240.
23. Higgins, J. M. (1994). Creative problem solving techniques: The handbook of new ideas for business. Winter Park, FL: New Management.
24. Hwang, W. Y., Chen, N. S., Dung, J. J., & Yang, Y. L. (2007). Multiple representation skills and creativity effects on mathematical problem solving using a multimedia whiteboard system. Educational Technology & Society, 10(2), 191-212.
25. Hwang, G. J., & Kuo, F. R. (2011). An information-summarizing instruction strategy for improving web-based problem-solving abilities of students. Australasian Journal of Educational Technology, 27(2), 290-306.
26. Jacobse, A. E.& E. G. Harskamp (2012). Towards efficient measurement of metacognition in mathematical problem solving.Metacognition and Learning 7(2), 133-149.
27. Jonassen, D.H. (1997). Instructional design models for well-structured and ill-structured problem-solving learning outcomes. Educational Technology: Research and Development, 45,65–94.
28. Jonassen, D.H., Beissner, K., & Yacci, M. (1993). Structural knowledge. Hillsdale, NJ:Erlbaum.
29. Kane, M. J., Hambrick, D. Z., Tuholski, S. W., Wilhelm, O., Payne,T. W., & Engle, R. W. (2004). The generality of working memory capacity:A latent-variable approach to verbal and visuo-spatial memoryspan and reasoning. Journal of Experimental Psychology: General,133, 189-217.
30. Kazemi, F., et al. (2010). A Subtle View to Metacognitive Aspect of Mathematical Problems Solving.Procedia - Social and Behavioral Sciences, 8,420-426.
31. Kuo, F. R., Hwang, G. J., & Lee, C. C. (2012). A hybrid approach to promoting students' web-based problem-solving competence and learning attitude. Computers & Education, 58(1), 351-364.
32. McCabe, D. P. (2010). The influence of complex working memory span task
administration methods on prediction of higher-level cognition and
metacognitive-control of response times. Memory & Cognition,38(7),868-882.
33. Meijer, J., M.V.J. Veenman, and B.H.A.M. van Hout Wolters.(2006). Metacognitive activities in text-studying and problem solving: Development of a taxonomy. Educational Research and Evaluation ,12(3), 209–37.
34. Moos, D. C., & Azevedo, R. (2006). The role of goal structure in undergraduates’ use of self-regulatory variables in two hypermedia learning tasks. Journal of Educational Multimedia and Hypermedia, 12(2), 117–134.
35. Oloruntegbe, K., Ikpe, A., & Kukuru, J. (2010). Factors in students' ability to connect school science with community and realworld life. Educational Research and Reviews, 5(7), 372-379.
36. Pintrich & M. Zeidner (Eds.), Handbook of self-regulation (pp. 532-566). San Diego,77 CA: Academic Press.
37. Pressley, M., Wharton-McDonald, R., & Allington, R. (2001). A study of effective first grade literacy instruction.Scientific Studies of Reading, 15(1), 35–58.
38. Prins, F. J., Veenman, M. V. J., & Elshout, J. J. (2006). The impact of intellectual ability and metacognition on learning: New support for the threshold of problematicity theory. Learning and Instruction, 16(4), 374–387.
39. Schraw, G.& Moshman, D. (1995).Metacognitive theories. Educational Psychological Review, 7, 351-371.
40. Schraw, G., & Sinatra, G. M. (2004). Epistemological development and its impact on cognition in academic domains. Contemporary Educational Psychology, 29(2), 95–102.
41. Schraw, G., Crippen, K.J., & Hartley, K. (2006). Promoting self-regulation in science education: Metacognition as part of a broader perspective on learning. Research in Science Education, 36, 111-139.
42. Schmiedek,F.&Hildebrandt,A.&Lovden,M.&Wilhelm,O.&Lindenberger,U.(2009).Complex Span Versus Updating Tasks of Working Memory:The Gap Is Not That Deep.Journal of Experimental Psychology:Learning Memory,and Cognition,35(4),1089-1096.
43. Scherer, R. & Tiemann,R. (2012). Factors of problem-solving competency in
a virtual chemistry environment: The role of metacognitive
knowledge about strategies. Computers & Education ,59(4), 1199-1214.
44. Shin, N.,& Jonassen ,D.J.,&McGe ,S.(2003). Predictors of well-structured and ill-structured problem solving in an astronomy simulation. Journal of Research in Science Teaching ,40(1),6-33.
45. She, H.C., et al. (2012). Web-based undergraduate chemistry problem-solving: The interplay of task performance, domain knowledge and web-searching strategies. Computers & Education, 59(2),750-761.
46. Stamovlasis, D. and G. Tsaparlis (2012). Applying catastrophe theory to an information-processing model of problem solving in science education. Science Education ,96(3),392-410.
47. Sternberg, R. J. (1988). A three-facet model of creativity. In R. J. Sternberg (Ed.), The natural of creativity: Contemporary psychological perspectives. New York, NY: Cambridge University Press.
48. Tabak, I. (2004). Synergy: A complement to emerging patterns in distibuted scaffolding. Journal of the Learning Sciences, 13(3), 305–335.
49. Tsai, C. W., & Shen, P. D. (2009). Applying web-enabled self-regulated learning and problem-based learning with initiation to involve low-achieving students in learning. Computers in Human Behavior, 25(6), 1189-1194.
50. Tsaparlis, G., & Angelopoulos, V. (2000). A model of problem solving: Its operation, validity and usefulness in the case of organic-synthesis problems. Science Education, 84, 131 – 153.
51. Tsaparlis, G. (2005). Non-algorithmic quantitative problem solving in university physical chemistry: A correlation study of the role of selective cognitive factors. Research in Science and Technological Education, 23, 125 – 148.
52. Veenman, M. V. J., Prins, F. J., & Elshout, J. J. (2002). Initial inductive learning in a complex computer simulated environment: the role of metacognitive skills and intellectual ability. Computers in Human Behavior, 18, 327-342.
53. Veenman, M. V. J. and M. A. Spaans (2005). Relation between intellectual and metacognitive skills: Age and task differences. Learning and Individual Differences ,15(2),159-176.
54. Veenman, M. V. J., et al. (2006). Metacognition and learning: conceptual and methodological considerations. Metacognition and Learning ,1(1),3-14.
55. Voss, J.F. (1988). Problem solving and reasoning in ill-structured domains. In Antaki, C.(Ed.), Analyzing everyday explanation: A casebook of methods (pp. 74–93). London: Sage.
56. Winne, P., & Perry, N. (2000). Measuring self-regulated learning. In M. Boekaerts, P. R.
57. Whitebread,D.(1999).Interaction between children,s metacognitive abilites,working memory capacity,strategies and performance during problem-solving.European Journal of Psychology of Education,14(4),489-507.