丁文彥。氣候環境遽變,不利水稻生育。豐年 58: 42-47。
王碧玲。2007。全球暖化與溫室效應的影響。科技發展政策報導 4:75-79。
江志峰。2012。不同水稻品種的氮肥施用量對其利用效率與產量效
應之研究。土壤肥料通訊 95: 93-94。
艾群。2010。農業生產節水技術之研發。出自 “農業工程與節能減
碳學術研討會專刊” 。 pp. 21-37。台中: 行政院農業委員會農
業試驗所。
李建捀、陳世雄、許愛娜、宋勳。2001。穀粒充實期土壤水分境況
對水稻生育及米質的影響。行政院農業委員會台中區農業改良
場研究彙報 39: 41-50。
徐森雄、蔡奉廷、楊婉嘉、曾金楷、吳建賢。2005。不同土壤之地
溫、水分與熱流之變化。作物、環境與生物資訊 2: 201-210。
野田佳宏。2013。水稻節水栽培的水分管理與甲烷排放。碩士論文。台中: 國立中興大學農藝學系研究所。
陳吉村。2008。土壤改良增進施肥效果。行政院農業委員會花蓮區
農業農業專訊 65: 5-7。
陳清田、甘俊二。1997。台灣地域性作物需水量之推估研究。農業
工程學報 43: 1-18。
陳清田、林益如、徐金錫、許勝雄、劉景平。2007。水稻種植期距
調整對灌溉節水效能之研究。出自 “台灣環境資源永續發展之
研討會專刊” 。pp. 149-172。桃園: 台灣環境資源永續發展協
會。
陳榮坤、楊純明。2004。水稻節水栽培之可行性探討(一)水分消耗
與節水空間。行政院農業委員會農業試驗所技術服務季刊 60:
1-4。
陳榮坤、楊純明。2005。水稻節水栽培之可行性探討(二)灌溉對水
稻生產影響。行政院農業委員會農業試驗所技術服務季刊 61:
1-5。
符耀中。2013。節水栽培對水稻水分生產力及氮肥利用效率的影
響。碩士論文。台中: 國立中興大學農藝學系研究所。
彭德昌。1996。有機質肥料之功效及其施用方法。行政院農業委員
會花蓮區農業專訊 18: 20-21。
彭德昌、黃山內。1998。台灣東部水田土壤甲烷氣體之釋放與影響
因子。行政院農業委員會花蓮區研究彙報 16: 35-45。
楊純明。2010。因應氣候變遷水資源短缺情境下之水稻田灌溉策略-
論通氣式及乾濕交替式水稻栽培策略。作物、環境與生物資訊
7: 212-220。
楊偉甫。2010。台灣地區水資源利用現況與未來發展問題。
http://www.ctci.org.tw/public/Attachment/01021151519774.pdf
經濟部水利署。2012。台灣地區民國101年農業用水量統計報告。
http://wuss.wra.gov.tw/annuals.aspx
經濟部水利署。2013。多元化水資源經營管理。
http://www.wra.gov.tw/ct.asp?xItem=30421&ctNode=1967
蔣汝國、黃小珍。2004。直播及節水栽培對水稻用水量及產量之影
響。行政院農業委員會台南區農業專訊 50: 13-16。
蔡明華。2012。氣候變遷對台灣農田灌溉排水之影響及因應對策。
農田水利會聯合會: 因應氣候變遷中日研討會。
http://www.tjia.gov.tw/conference/2012/doc/topic5.pdf
劉景平、陳清田、盧榮祥。1996。節水灌溉對水稻生產生態影響之
先期研究。高雄: 財團法人曹公農業水利研究發展基金會。
賴文龍、鄭雅紋、陳玟瑾。2012。氮肥用量對水稻產量之影響。行
政院農業委員會台中區農業改良場研究彙報 114: 35-43。
謝元德。2005。農田地力增進措施。行政院農業委員會台南區農業
改良場技術專刊 132: 107-117。
謝嘉如。2009。節水栽培對水稻生育及產量之影響。碩士論文。台中: 國立中興大學農藝學系研究所。
譚增偉。2008。認識當前氮肥之酸鹼平衡與其用量問題。行政院農
業試驗所技術服務 74: 19-23。
Alberto, M. C. R., R. Wassmann, R. J. Buresh, J. R. Quility, T. Q. Correa, J. M. Sandro, and C. A. R. Centeno. 2014. Measuring methane flux from irrigated rice fields by eddy covariance method using open-path gas analyzer. Field Crops Res. 160: 12-21.
Banger, K., H. Tian, and C. Lu. 2012. Do nitrogen fertilizers stimulate of inhibit methane emissions from rice fields? Glob. Chang. Biol. 18: 3259-3267
Barak, P., B. O. Jobe, A. R. Krueger, L. A. Peterson, and D. A. Laird. 1997. Effects of long-term soil acidification due to nitrogen fertilizer inputs in Wisconsin. Plant Soil 197: 61-69.
Blasing, T. J. 2014. Recent greenhouse gas concentrations.
http://cdiac.ornl.gov/pns/current_ghg.html
Bouman, B. A. M. 2001. Water-efficient management strategies in rice production. Int. Rice Res. 26: 17-22.
Bouman, B. A. M., R. M. Lampayan, and T. P. Tuong. 2007. Water management in irrigated rice: coping with water scarcity. Los Banos. International Rice Research Institute. pp. 45-47.
Bouman, B. A. M., S. Peng, A. R. Castaneda, and R. M. Visperas. 2005. Yield and water use of irrigated tropical aerobic rice systems. Agric. Water Manage. 74: 87-105.
Bouman, B. A. M., and T. P. Tung. 2001. Field water management to save water and increase is productivity in irrigated lowland rice. Agric. Water Manage. 49: 11-30.
Brevik, E. C. 2012. Soils and climate change: gas fluxed and soil processes. Soil Horiz. 53: 12-23.
Brzezinska, M., Z. Stepniewska, and W. Stepniewski. 1998. Soil oxygen status and dehydrogenase activity. Soil Biol. Biochem. 30: 1783-1790.
Chadwick, D. R., and B. F. Pain. 1997. Methane fluxes following slurry applications to grassland soils: laboratory experiments. Agric. Ecosyst. Environ. 63: 51-60.
Chynoweth, D. P., J. M. Owens, and R. Legrand. 2001. Renewable methane from anaerobic digestion of biomass. Renew. Energy 22: 1-8.
Das, K., and K. K. Baruah. 2008. Methane emission associated with anatomical and morphophysiological characteristics of rice (Oryza sativa) plant. Physiol. Plant. 134: 303-312.
Dobermann, A. 2007. Nutrient us efficiency – measurement and management. In: “Fertilizer best management practices”. eds. pp. 1-28. Brussel, Belgium.
Dubey, S. K. 2005. Microbial ecology of methane emission in rice agroecosystem: a review. Appl. Ecol. Environ. Res. 3: 1-27.
Facon, T. 2000. Water management in rice in Asia: some issues for the future. In: “Bridging the rice yield gap in Asia-Pacific region”. eds. M. K. Papademetriou, F. J. Dent, and E. D. Herath. pp. 178-200. Food and Agriculture Organization of the United Nations Regional Office for Asia and the Pacific Bangkok, Thailand.
FAOSTAT. 2013. http://www.fao.org/docrep/003/x6905e/x6905e0g.htm
Farooq, M., N. Kobayashi, A. Wahid, O. Ito, and S. Basra. 2009. Strategies for producing more rice with less water. Adv. Agron. 101: 351-388.
Gunaseelan, V. N. 1997. Anaerobic digestion of biomass for methane production: a review. Biomass Bioenergy 13: 83-114.
Homma, K., T. Horie, T. Shiraiwa, S. Sripodok, and N. Supapoj. 2004. Delay of heading date as an index of water stress in rainfed rice in mini-watersheds in northeast Thailand. Field Crops Res. 88: 11-19.
Hou, A. X., G. X. Chen, Z. P. Wang, O. V. Cleemput, and W. H. Patrick. 2000. Methane and nitrous oxide emissions from a rice field in relation to soil redox and microbiological processes. Soil Sci. Soc. Am. J. 64: 2180-2186.
Hu, R. G., R. Hatano, K. Kusa, and T. Sawamoto. 2002. Effect of nitrogen fertilization on methane flux in a structured clay soil cultivated with onion in central Hokkaido, Japan. Soil Sci. Plant Nutr. 48: 797-804.
IFADATA. 2012. http://ifadata.fertilizer.org/ucSearch.aspx
Kima, A. S., W. G. Chung, and Y. M. Wang. 2014. Improving irrigated lowland rice water use efficiency under saturated soil culture for adoption in tropical climate conditions. 2014. Water 6: 2830-2846.
Kimura, M., T. Minoda, and J. Murase. 1993. Water-soluble organic materials in paddy soil ecosystem. Soil Sci. Plant Nutr. 39: 713-724.
Khairi, M. M. Nozulaidi, A. Afifah, and M. S. Jahan. 2015. Effect of various water regimes on rice production in lowland irrigation. Aust. J. Crop Sci. 9: 153-159.
Kludze, H K., R. D. Delaune, and W. H. Patrick. 1993. Aerenchyma formation and methane and oxygen exchange in rice. Soil Sci. Soc. Am. J. 57: 386-391.
Kudo, Y., K. Noborio, N. Shimoozono, and R. Kurihara. 2014. The effective water management practice for mitigating greenhouse gas emissions and maintaining rice yield in central Japan. Agric. Ecosyst. Environ. 186: 77-85.
Lambers, H., F. S. Chapin ?, and T. L. Pons. 2008. Plant water relation. In: “Plant physiology ecology” eds. pp. 163-165. Wageningen: Springer
Linquist. B., K. V. Groenigen, M. A. A. Borbe, C. Pittelkow, and C. V. Kessel. 2012. An agronomic assessment of greenhouse gas emissions from cereal crops. Glob. Chang. Biol. 18: 194-209.
Liou, R. M., S. N. Huang, and C. W. Lin. 2003. Methane emission from fields with differences in nitrogen fertilizers and rice varieties in Taiwan paddy soils. Chemosphere 50: 237-246.
Liu, S., Y. Zhang, F. Lin, L. Zhang, and J. Zou. 2014. Methane and nitrous oxide emissions from direct-seeded and seeding-transplanted rice paddies in southeast China. Plant Soil. 374: 285-297.
Mcdonald, A. J., P. R. Hobbs, and S. J. Riha. 2006. Does the system of rice intensification outperform conventional best management? A synopsis of the empirical record. Field Crops Res. 96: 31-36.
Mer, L. L., and P. Roger. 2001. Production, oxidation, emission and consumption of methane by soils: a review. Euro. J. Soil Biol. 37: 25-50.
Minamikawa, K., and N. Sakai. 2004. The effect of water management based on soil redox potential on methane emission from two kinds of paddy soils in Japan. Agric. Ecosyst. Environ. 107: 397-407.
Minamikawa, K., and N. Sakai. 2006. The practical use of water management based on soil redox potential for decreasing methane emission from a paddy field in Japan. Agric. Ecosyst. Environ. 116: 181-188.
Molden, D., and T. Y. Oweis. 2007. Pathways for increasing
agriculturewater productivity. In: “Water use and productivity in a
river basin”. eds. Chapala. L. pp. 279-310.
Naser, H. M., O. Nagata, S. Tamura, and R. Hatano. 2010. Methane emissions from five paddy fields with different amounts of rice straw application in central Hokkaido, Japan. Soil Sci. Plant Nutr. 53: 95-101.
Parashar D. C., P. K. Gupta, J. Rai, R. C. Sharma, and N. Singh. 1993. Effect of soil temperature on methane emission from paddy fields. Chemosphere 26: 1-4.
Patrick, W. H., and I. C. Mahapatra. 1968. Transformation and availability to rice of nitrogen and phosphorus in waterlogged soils. Adv. Agron. 20: 323-359.
Peng, S., and B. A. M. Bouman. 2007. Prospects for genetic improvement to increase lowland rice yields with less water and nitrogen. In: “Scale and Complexity in plant systems research. Gene-plant crop relations”. eds. J. H. J. Spiertz, P. C. Struikand, H. H. van Larr. pp. 251-256. Wageningen : Springer.
Peoples, M. B., E. W. Boyer, K. W. T. Goulding, P. Heffer, V. A. Ochwoh, B. Vanlauwe, S. Wood, K. Yagi, and O. V. Cleemput. 2004. Pathways of nitrogen loss and their impacts on human health and the environment. In: “Agriculture and the nitrogen cycle”. eds. A. R. Mosier, J. K. Syers, and J .R. Freney, pp. 53-69. Washington, U. S. A.
Pittelkow, C. M., M. A. A. Borbe, J. E. Hill, J. Six, C. V. Kessel, and B. A. Linquist. 2013. Yield-scaled global warming potential of annual nitrous oxide and methane emissions from continuously flooded rice in response to nitrogen input. Agric. Ecosyst. Environ. 177: 10-20.
Qu, H., H. Tao, Y. Tao, M. Liu, K. Shen, and S. Lin. 2012 Ground cover production system increases yield and nitrogen recovery efficiency. Agron. J. 104: 1399-1407.
Ramasamy, S., H. F. M. ten Berge, and S. Purushothamam. 1997. Yield formation in rice in response to drainage and nitrogen application. Field Crops Res. 51: 65-82.
Razavipour, T., and A. R. Farrokh. 2014. Measurement of vertical water percolation through different soil textures of paddy field during rice growth season. Int. J. Adv. Biol. Biomed. Res. 2: 1379-1388.
Sander, B. O., and R. Wassmann. 2014. Common practices for manual greenhouse gas sampling in rice production: a literature study on sampling modalities of the closed chamber method. Greenh. Gas Meas. Manag. 4: 1-13.
Seck, P. A., A. Diagne, S. Mohantry, and M. C. S. Wopereis. 2012. Crops that feed the world 7: rice. Food Sec. 4: 7-24.
Solomon, S., D. Qin, M. Manning, Z. Chen, M. Marquis, K. B. Averyt, M. Tignor, and H. L. Miller. 2007. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press pp.
Smith, P., and M. Bustaman. 2014. Agriculture, forestry and other land use (AFOLU). In: “Climate change 2014”. eds. pp. 811-825. Geneva, Switzerland: Intergovernment panel on climate change.
Sun, Y., J. Ma, Y. Sun, H. Xu, Z. Yang, S. Liu, X. Jia, and H. Zheng. 2012. The effects of different water and nitrogen managements on yield and nitrogen use efficiency in hybrid rice of China. Field Crops Res. 127: 85-98.
Tao, H., H. Brueck, K. Dittert, C. Kreye, S. Lin, and B. Sattelmacher. 2006. Growth and yield of rice (Oryza sativa L.) in the water-saving ground cover rice production system (GCRPS). Field Crops Res. 95: 1-12.
Teh. Y. A., W. L. Silver, and M. E. Conrad. 2005.Oxygn effects on methane production and oxidation in humid tropical forest soils. Glob. Chang Biol. 11: 1283-1297.
Xiong Z. Q., G. X. Xing, and Z. L. Zhu. 2007. Nitrogen oxide and methane emissions as affected by water, soil and nitrogen. Pedosphere 17: 146-155.
Whitman, W. B., T. L. Bowen, and D. R. Boone. 2014. The methanogenic bacteria.
Yang, S. S., C. M. Liu, C. M. Lai, and Y. L. Liu. 2003. Estimation of methane and nitrous oxide emission from paddy fields and uplands during 1990-2000 in Taiwan. Chemosphere 52: 1295-1305.
Yang, S. S., and H. L. Chang. 1999. Diurnal variation of methane emission from paddy fields at different growth stages of rice cultivation in Taiwan. Agric. Ecosyst. Environ. 76: 75-84.
Yoshida, S. 1981. Fundamentals of rice crop science. Los Banos. International Rice Research Institute. pp. 97-98.
Zeikus, J. G., and M. R. Winfrey. 1976. Temperature limitation of methanogensis in aquatic sediments. Appl. Environ. Microbiol. 31: 99-107.