跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.41) 您好!臺灣時間:2026/01/13 19:11
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳韋廷
研究生(外文):Wei-Ting Chen
論文名稱:節水栽培對稻田甲烷排放量及稻穀產量之影響
論文名稱(外文):Methane emission and rice production in water-saving irrigated rice
指導教授:陳宗禮陳宗禮引用關係
指導教授(外文):Chung-Li Chen
口試委員:羅正宗蘇宗振
口試委員(外文):Zheng-Zong LuoZong-Zhen Su
口試日期:2015-06-24
學位類別:碩士
校院名稱:國立中興大學
系所名稱:農藝學系所
學門:農業科學學門
學類:一般農業學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:97
中文關鍵詞:水稻節水甲烷產量
外文關鍵詞:rice(Oryza sativa L.)water-savingmethaneyield
相關次數:
  • 被引用被引用:2
  • 點閱點閱:514
  • 評分評分:
  • 下載下載:47
  • 收藏至我的研究室書目清單書目收藏:0
稻米為國人傳統主食,台灣傳統以移植稻方式在湛水狀態下栽培水稻,因此消耗較多的水資源,長期浸水的水稻田也導致田區甲烷生成的有利條件及改變植株養分的利用,若能改變水田水份管理方式,可以有效降低甲烷排放、改變植株養分利用狀態及維持產量。本論文於102年在嘉義鹿草地區及103年在台中霧峰地區,以節水栽培及慣行湛水栽培為水分處理,配合120 kg/ha、180 kg/ha、240 kg/ha的氮素處理,參試品種為台南11號及台稉9號,調查其在不同水分及氮素的處理組合下的生長情形、小區產量、氮素利用效率、水分生產力及甲烷排放量。兩地區四期作的試驗結果顯示,節水栽培依不同年期可節省約10-34%的灌溉水量,且能維持水稻在各產量構成要素的表現及一定的產量,氮素利用效率則會隨著氮素施用而下降。追蹤田區的甲烷釋放量,一期作主要在曬田前的營養生長期及穀粒充實期有明顯的甲烷排放量,二期作集中在曬田前的營養生長期,不同年期水田甲烷釋放的趨勢不一致,甲烷排放量因水分管理、氮肥處理;栽培生長期及監測取樣點不同有很大的差異。調查甲烷取樣點甲烷排放量與土壤環境因子的關係,顯示較高土壤溫度、較高土壤體積含水量、田區水位較高及較低土壤氧化還原電位有利於甲烷菌代謝而導致甲烷排放增加。
Abstract
Rice (Oryza sativa L.) is the most important staples in Taiwan. Traditional transplanted rice with continuous standing water in Taiwan has relatively high water inputs. Flooding of the soil is a prerequisite for sustained emissions of methane and modifies nutrient use efficiencies. Manipulation of rice floodwater may offer a means of mitigating methane emission and changing plant nutritional status from rice fields without reducing rice yields. In this thesis, water-saving culture and flooding culture as water treatment and 120 kg/ha, 180 kg/ha, 240 kg/ha of nitrogen was applied at Lucao, Chiayi in 2013 and Wufeng, Taichung in 2014 respectively. Tainan 11 and Taikeng 9 was tested varieties to investigate the different treatment combinations of water and nitrogen applied on the rice growth conditions including plant height, yield components, yields, nitrogen use efficiency, water productivity and methane emission. The results showed that water-saving cultures depending on the cropping season can save about 10-34% of the irrigation water use, and can maintain the rice yield components in each performance and certain yields. Nitrogen use efficiency will decline as nitrogen over input. In 1st cropping season there were methane peak on the vegetative stage before midseason drainage and grain filling stage, while the peak appeared on the vegetative stage before midseason drainage in 2nd cropping season. Methane emission rates varied markedly with water regime, nitrogen treatment, cropping season, and monitor point. The relationship of soil character and methane emission rate at sampling sites revealed that higher soil temperature, increased in soil volumetric water content and lower soil redox potential were much appropriate for methanogenic bacteria and produced more methane emission in rice fields.
中文摘要…………………………………………………………………I
英文摘要…………………………………………………………………II
目錄…………………………………………………………………………III
表目錄……………………………………………………………………IV
圖目錄……………………………………………………………………VI
前言…………………………………………………………………………1
前人研究………………………………………………………………4
材料與方法…………………………………………………………19
結果………………………………………………………………………26
一、不同試驗地區的土壤特性…………………………………………………………26
二、不同水分與氮肥處理下水分投入量………………………………………31
三、不同水分與氮肥處理下甲烷排放量………………………………………40
四、不同水分與氮肥處理下水稻性狀及產量構成要素……………62
五、不同水分與氮肥處理下氮肥利用效率與水分生產力………72
討論……………………………………………………………………………………………………………………80
參考文獻……………………………………………………………………………………………………………91
丁文彥。氣候環境遽變,不利水稻生育。豐年 58: 42-47。
王碧玲。2007。全球暖化與溫室效應的影響。科技發展政策報導 4:
75-79。
江志峰。2012。不同水稻品種的氮肥施用量對其利用效率與產量效
應之研究。土壤肥料通訊 95: 93-94。
艾群。2010。農業生產節水技術之研發。出自 “農業工程與節能減
碳學術研討會專刊” 。 pp. 21-37。台中: 行政院農業委員會農
業試驗所。
李建捀、陳世雄、許愛娜、宋勳。2001。穀粒充實期土壤水分境況
對水稻生育及米質的影響。行政院農業委員會台中區農業改良
場研究彙報 39: 41-50。
徐森雄、蔡奉廷、楊婉嘉、曾金楷、吳建賢。2005。不同土壤之地
溫、水分與熱流之變化。作物、環境與生物資訊 2: 201-210。
野田佳宏。2013。水稻節水栽培的水分管理與甲烷排放。碩士論
文。台中: 國立中興大學農藝學系研究所。
陳吉村。2008。土壤改良增進施肥效果。行政院農業委員會花蓮區
農業農業專訊 65: 5-7。
陳清田、甘俊二。1997。台灣地域性作物需水量之推估研究。農業
工程學報 43: 1-18。
陳清田、林益如、徐金錫、許勝雄、劉景平。2007。水稻種植期距
調整對灌溉節水效能之研究。出自 “台灣環境資源永續發展之
研討會專刊” 。pp. 149-172。桃園: 台灣環境資源永續發展協
會。
陳榮坤、楊純明。2004。水稻節水栽培之可行性探討(一)水分消耗
與節水空間。行政院農業委員會農業試驗所技術服務季刊 60:
1-4。
陳榮坤、楊純明。2005。水稻節水栽培之可行性探討(二)灌溉對水
稻生產影響。行政院農業委員會農業試驗所技術服務季刊 61:
1-5。
符耀中。2013。節水栽培對水稻水分生產力及氮肥利用效率的影
響。碩士論文。台中: 國立中興大學農藝學系研究所。
彭德昌。1996。有機質肥料之功效及其施用方法。行政院農業委員
會花蓮區農業專訊 18: 20-21。
彭德昌、黃山內。1998。台灣東部水田土壤甲烷氣體之釋放與影響
因子。行政院農業委員會花蓮區研究彙報 16: 35-45。
楊純明。2010。因應氣候變遷水資源短缺情境下之水稻田灌溉策略-
論通氣式及乾濕交替式水稻栽培策略。作物、環境與生物資訊
7: 212-220。
楊偉甫。2010。台灣地區水資源利用現況與未來發展問題。
http://www.ctci.org.tw/public/Attachment/01021151519774.pdf
經濟部水利署。2012。台灣地區民國101年農業用水量統計報告。
http://wuss.wra.gov.tw/annuals.aspx
經濟部水利署。2013。多元化水資源經營管理。
http://www.wra.gov.tw/ct.asp?xItem=30421&ctNode=1967
蔣汝國、黃小珍。2004。直播及節水栽培對水稻用水量及產量之影
響。行政院農業委員會台南區農業專訊 50: 13-16。
蔡明華。2012。氣候變遷對台灣農田灌溉排水之影響及因應對策。
農田水利會聯合會: 因應氣候變遷中日研討會。
http://www.tjia.gov.tw/conference/2012/doc/topic5.pdf
劉景平、陳清田、盧榮祥。1996。節水灌溉對水稻生產生態影響之
先期研究。高雄: 財團法人曹公農業水利研究發展基金會。
賴文龍、鄭雅紋、陳玟瑾。2012。氮肥用量對水稻產量之影響。行
政院農業委員會台中區農業改良場研究彙報 114: 35-43。
謝元德。2005。農田地力增進措施。行政院農業委員會台南區農業
改良場技術專刊 132: 107-117。
謝嘉如。2009。節水栽培對水稻生育及產量之影響。碩士論文。台
中: 國立中興大學農藝學系研究所。
譚增偉。2008。認識當前氮肥之酸鹼平衡與其用量問題。行政院農
業試驗所技術服務 74: 19-23。
Alberto, M. C. R., R. Wassmann, R. J. Buresh, J. R. Quility, T. Q. Correa, J. M. Sandro, and C. A. R. Centeno. 2014. Measuring methane flux from irrigated rice fields by eddy covariance method using open-path gas analyzer. Field Crops Res. 160: 12-21.
Banger, K., H. Tian, and C. Lu. 2012. Do nitrogen fertilizers stimulate of inhibit methane emissions from rice fields? Glob. Chang. Biol. 18: 3259-3267
Barak, P., B. O. Jobe, A. R. Krueger, L. A. Peterson, and D. A. Laird. 1997. Effects of long-term soil acidification due to nitrogen fertilizer inputs in Wisconsin. Plant Soil 197: 61-69.
Blasing, T. J. 2014. Recent greenhouse gas concentrations.
http://cdiac.ornl.gov/pns/current_ghg.html
Bouman, B. A. M. 2001. Water-efficient management strategies in rice production. Int. Rice Res. 26: 17-22.
Bouman, B. A. M., R. M. Lampayan, and T. P. Tuong. 2007. Water management in irrigated rice: coping with water scarcity. Los Banos. International Rice Research Institute. pp. 45-47.
Bouman, B. A. M., S. Peng, A. R. Castaneda, and R. M. Visperas. 2005. Yield and water use of irrigated tropical aerobic rice systems. Agric. Water Manage. 74: 87-105.
Bouman, B. A. M., and T. P. Tung. 2001. Field water management to save water and increase is productivity in irrigated lowland rice. Agric. Water Manage. 49: 11-30.
Brevik, E. C. 2012. Soils and climate change: gas fluxed and soil processes. Soil Horiz. 53: 12-23.
Brzezinska, M., Z. Stepniewska, and W. Stepniewski. 1998. Soil oxygen status and dehydrogenase activity. Soil Biol. Biochem. 30: 1783-1790.
Chadwick, D. R., and B. F. Pain. 1997. Methane fluxes following slurry applications to grassland soils: laboratory experiments. Agric. Ecosyst. Environ. 63: 51-60.
Chynoweth, D. P., J. M. Owens, and R. Legrand. 2001. Renewable methane from anaerobic digestion of biomass. Renew. Energy 22: 1-8.
Das, K., and K. K. Baruah. 2008. Methane emission associated with anatomical and morphophysiological characteristics of rice (Oryza sativa) plant. Physiol. Plant. 134: 303-312.
Dobermann, A. 2007. Nutrient us efficiency – measurement and management. In: “Fertilizer best management practices”. eds. pp. 1-28. Brussel, Belgium.
Dubey, S. K. 2005. Microbial ecology of methane emission in rice agroecosystem: a review. Appl. Ecol. Environ. Res. 3: 1-27.
Facon, T. 2000. Water management in rice in Asia: some issues for the future. In: “Bridging the rice yield gap in Asia-Pacific region”. eds. M. K. Papademetriou, F. J. Dent, and E. D. Herath. pp. 178-200. Food and Agriculture Organization of the United Nations Regional Office for Asia and the Pacific Bangkok, Thailand.
FAOSTAT. 2013. http://www.fao.org/docrep/003/x6905e/x6905e0g.htm
Farooq, M., N. Kobayashi, A. Wahid, O. Ito, and S. Basra. 2009. Strategies for producing more rice with less water. Adv. Agron. 101: 351-388.
Gunaseelan, V. N. 1997. Anaerobic digestion of biomass for methane production: a review. Biomass Bioenergy 13: 83-114.
Homma, K., T. Horie, T. Shiraiwa, S. Sripodok, and N. Supapoj. 2004. Delay of heading date as an index of water stress in rainfed rice in mini-watersheds in northeast Thailand. Field Crops Res. 88: 11-19.
Hou, A. X., G. X. Chen, Z. P. Wang, O. V. Cleemput, and W. H. Patrick. 2000. Methane and nitrous oxide emissions from a rice field in relation to soil redox and microbiological processes. Soil Sci. Soc. Am. J. 64: 2180-2186.
Hu, R. G., R. Hatano, K. Kusa, and T. Sawamoto. 2002. Effect of nitrogen fertilization on methane flux in a structured clay soil cultivated with onion in central Hokkaido, Japan. Soil Sci. Plant Nutr. 48: 797-804.
IFADATA. 2012. http://ifadata.fertilizer.org/ucSearch.aspx
Kima, A. S., W. G. Chung, and Y. M. Wang. 2014. Improving irrigated lowland rice water use efficiency under saturated soil culture for adoption in tropical climate conditions. 2014. Water 6: 2830-2846.
Kimura, M., T. Minoda, and J. Murase. 1993. Water-soluble organic materials in paddy soil ecosystem. Soil Sci. Plant Nutr. 39: 713-724.
Khairi, M. M. Nozulaidi, A. Afifah, and M. S. Jahan. 2015. Effect of various water regimes on rice production in lowland irrigation. Aust. J. Crop Sci. 9: 153-159.
Kludze, H K., R. D. Delaune, and W. H. Patrick. 1993. Aerenchyma formation and methane and oxygen exchange in rice. Soil Sci. Soc. Am. J. 57: 386-391.
Kudo, Y., K. Noborio, N. Shimoozono, and R. Kurihara. 2014. The effective water management practice for mitigating greenhouse gas emissions and maintaining rice yield in central Japan. Agric. Ecosyst. Environ. 186: 77-85.
Lambers, H., F. S. Chapin ?, and T. L. Pons. 2008. Plant water relation. In: “Plant physiology ecology” eds. pp. 163-165. Wageningen: Springer
Linquist. B., K. V. Groenigen, M. A. A. Borbe, C. Pittelkow, and C. V. Kessel. 2012. An agronomic assessment of greenhouse gas emissions from cereal crops. Glob. Chang. Biol. 18: 194-209.
Liou, R. M., S. N. Huang, and C. W. Lin. 2003. Methane emission from fields with differences in nitrogen fertilizers and rice varieties in Taiwan paddy soils. Chemosphere 50: 237-246.
Liu, S., Y. Zhang, F. Lin, L. Zhang, and J. Zou. 2014. Methane and nitrous oxide emissions from direct-seeded and seeding-transplanted rice paddies in southeast China. Plant Soil. 374: 285-297.
Mcdonald, A. J., P. R. Hobbs, and S. J. Riha. 2006. Does the system of rice intensification outperform conventional best management? A synopsis of the empirical record. Field Crops Res. 96: 31-36.
Mer, L. L., and P. Roger. 2001. Production, oxidation, emission and consumption of methane by soils: a review. Euro. J. Soil Biol. 37: 25-50.
Minamikawa, K., and N. Sakai. 2004. The effect of water management based on soil redox potential on methane emission from two kinds of paddy soils in Japan. Agric. Ecosyst. Environ. 107: 397-407.
Minamikawa, K., and N. Sakai. 2006. The practical use of water management based on soil redox potential for decreasing methane emission from a paddy field in Japan. Agric. Ecosyst. Environ. 116: 181-188.
Molden, D., and T. Y. Oweis. 2007. Pathways for increasing
agriculturewater productivity. In: “Water use and productivity in a
river basin”. eds. Chapala. L. pp. 279-310.
Naser, H. M., O. Nagata, S. Tamura, and R. Hatano. 2010. Methane emissions from five paddy fields with different amounts of rice straw application in central Hokkaido, Japan. Soil Sci. Plant Nutr. 53: 95-101.
Parashar D. C., P. K. Gupta, J. Rai, R. C. Sharma, and N. Singh. 1993. Effect of soil temperature on methane emission from paddy fields. Chemosphere 26: 1-4.
Patrick, W. H., and I. C. Mahapatra. 1968. Transformation and availability to rice of nitrogen and phosphorus in waterlogged soils. Adv. Agron. 20: 323-359.
Peng, S., and B. A. M. Bouman. 2007. Prospects for genetic improvement to increase lowland rice yields with less water and nitrogen. In: “Scale and Complexity in plant systems research. Gene-plant crop relations”. eds. J. H. J. Spiertz, P. C. Struikand, H. H. van Larr. pp. 251-256. Wageningen : Springer.
Peoples, M. B., E. W. Boyer, K. W. T. Goulding, P. Heffer, V. A. Ochwoh, B. Vanlauwe, S. Wood, K. Yagi, and O. V. Cleemput. 2004. Pathways of nitrogen loss and their impacts on human health and the environment. In: “Agriculture and the nitrogen cycle”. eds. A. R. Mosier, J. K. Syers, and J .R. Freney, pp. 53-69. Washington, U. S. A.
Pittelkow, C. M., M. A. A. Borbe, J. E. Hill, J. Six, C. V. Kessel, and B. A. Linquist. 2013. Yield-scaled global warming potential of annual nitrous oxide and methane emissions from continuously flooded rice in response to nitrogen input. Agric. Ecosyst. Environ. 177: 10-20.
Qu, H., H. Tao, Y. Tao, M. Liu, K. Shen, and S. Lin. 2012 Ground cover production system increases yield and nitrogen recovery efficiency. Agron. J. 104: 1399-1407.
Ramasamy, S., H. F. M. ten Berge, and S. Purushothamam. 1997. Yield formation in rice in response to drainage and nitrogen application. Field Crops Res. 51: 65-82.
Razavipour, T., and A. R. Farrokh. 2014. Measurement of vertical water percolation through different soil textures of paddy field during rice growth season. Int. J. Adv. Biol. Biomed. Res. 2: 1379-1388.
Sander, B. O., and R. Wassmann. 2014. Common practices for manual greenhouse gas sampling in rice production: a literature study on sampling modalities of the closed chamber method. Greenh. Gas Meas. Manag. 4: 1-13.
Seck, P. A., A. Diagne, S. Mohantry, and M. C. S. Wopereis. 2012. Crops that feed the world 7: rice. Food Sec. 4: 7-24.
Solomon, S., D. Qin, M. Manning, Z. Chen, M. Marquis, K. B. Averyt, M. Tignor, and H. L. Miller. 2007. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press pp.
Smith, P., and M. Bustaman. 2014. Agriculture, forestry and other land use (AFOLU). In: “Climate change 2014”. eds. pp. 811-825. Geneva, Switzerland: Intergovernment panel on climate change.
Sun, Y., J. Ma, Y. Sun, H. Xu, Z. Yang, S. Liu, X. Jia, and H. Zheng. 2012. The effects of different water and nitrogen managements on yield and nitrogen use efficiency in hybrid rice of China. Field Crops Res. 127: 85-98.
Tao, H., H. Brueck, K. Dittert, C. Kreye, S. Lin, and B. Sattelmacher. 2006. Growth and yield of rice (Oryza sativa L.) in the water-saving ground cover rice production system (GCRPS). Field Crops Res. 95: 1-12.
Teh. Y. A., W. L. Silver, and M. E. Conrad. 2005.Oxygn effects on methane production and oxidation in humid tropical forest soils. Glob. Chang Biol. 11: 1283-1297.
Xiong Z. Q., G. X. Xing, and Z. L. Zhu. 2007. Nitrogen oxide and methane emissions as affected by water, soil and nitrogen. Pedosphere 17: 146-155.
Whitman, W. B., T. L. Bowen, and D. R. Boone. 2014. The methanogenic bacteria.
Yang, S. S., C. M. Liu, C. M. Lai, and Y. L. Liu. 2003. Estimation of methane and nitrous oxide emission from paddy fields and uplands during 1990-2000 in Taiwan. Chemosphere 52: 1295-1305.
Yang, S. S., and H. L. Chang. 1999. Diurnal variation of methane emission from paddy fields at different growth stages of rice cultivation in Taiwan. Agric. Ecosyst. Environ. 76: 75-84.
Yoshida, S. 1981. Fundamentals of rice crop science. Los Banos. International Rice Research Institute. pp. 97-98.
Zeikus, J. G., and M. R. Winfrey. 1976. Temperature limitation of methanogensis in aquatic sediments. Appl. Environ. Microbiol. 31: 99-107.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top