跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.44) 您好!臺灣時間:2025/12/30 22:15
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:江子揚
研究生(外文):Tzu-Yang Jiang
論文名稱:調頻連續波雷達車用防撞警示雷達與77GHz CMOS ΔΣ分數型頻率合成器之設計與分析
論文名稱(外文):FMCW Vehicle Collision Warning Radar with design and Analysis of 77GHz CMOS ΔΣ Fractional-N Frequency Synthesizer
指導教授:黃天偉
指導教授(外文):Tian-Wei Huang
口試委員:張嘉展蔡政翰
口試委員(外文):Chia-Chan ChangJeng-Han Tsai
口試日期:2013-06-26
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:電信工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:68
中文關鍵詞:77 GHz調頻連續波雷達分數型頻率合成器鎖相迴路
外文關鍵詞:77 GHz FMCW car radarfractional-N frequency synthesizerphase-locked loop (PLL)
相關次數:
  • 被引用被引用:0
  • 點閱點閱:272
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在目前高頻雷達的應用中,76GHz~81GHz的頻段是歐洲規格的短距離雷達頻率範圍,最普遍的應用就是汽車雷達,日本也將跟進這個趨勢。因此本篇論文首先會討論到的是77GHz短距離雷達目前在世界上的發展趨勢、以及毫米波雷達在應用上的優勢,接著會討論77GHz汽車雷達的系統要求、應用以及規格、演算法等等,做一個詳細的介紹。汽車雷達採用的是調頻連續波應用(FMCW),關於此應用之原理、公式推導以及每個參數之間的關係,在本篇論文中都將會有仔細的介紹。
而有這樣的理論基礎之後,更重要的是將理論化為實際。關於電路實做的部分,也就是本篇論文下半部將以ΔΣ除小數頻率合成器為例,介紹如何以互補式金氧半導體(CMOS)在台積電先進的65奈米製程之下,實做出77 GHz調頻連續波應用之汽車雷達電路。本篇論文將介紹77 GHzΔΣ除小數頻率合成器,當應用在連續調頻雷達時, 按照系統需求去做適當的電路設計。
77 GHz連續調頻應用之ΔΣ除小數頻率合成器包含石英晶體震盪器、相位頻率比較器、充電磊、迴路濾波器、電壓控制震盪器、注入鎖定除頻器、互補式除頻器、多模除數除頻器,還有ΔΣ除小數數位控制區塊。本篇論文再介紹電路的系統規劃之後,便可決定石英晶體震盪器的選擇、充電磊的電流大小、迴路濾波器每一個電阻與電容大小的選取、電壓控制震盪器的設計規格與要求、注入鎖定除頻器的頻率範圍、互補式除頻器的操作曲線、多模除數除頻器的除數範圍,以及ΔΣ除小數數位控制區塊的解析度規格等等。由巨觀的系統規劃到細部的電路設計考量,本篇論文都會鉅細靡遺的做詳細的闡述。
而在頻率合成器中同時包含了射頻電路與數位電路的部分,這兩個部分互有所專、各司其職,由於數位電路的部分會影響到射頻電路的表現。關於這樣的問題,本篇論文也將討論其因應之道。


Between radio frequency radar applications, 76GHz~81GHz band has been dedicated to short range radar in Europe. Japan is also looking forward to this as well. Therefore, first of all 77GHz short range radar’s development, background and motivation will be discussed. After that, the following is specification, application, and system requirement of 77GHz car radar introduction. This kind of car radar mainly applies FMCW radar system. About FMCW radar system, there will also be a careful explanation.
Besides, what the more important is how to put the theory into practical. To achieve this acquirement, the following half part of thesis will take 77GHz CMOS ΔΣ Fractional-N Frequency Synthesizer for example, showing how to implement this integrated circuit design in TSMC 65nm CMOS process.
The proposed 77GHz CMOS ΔΣ Fractional-N Frequency Synthesizer includes crystal oscillator, phase frequency detector (PFD), charge pump (CP), loop filter (LF), voltage controlled oscillator (VCO), injection-locked frequency divider (ILFD), current-mode logic (CML), multi-modulus divider (MMD), and ΔΣ modulator. Furthermore, important parameters for circuits above will also be discussed.
This frequency synthesizer contains RF part and digital part. Both parts take their own rules, but the interference will also exist. How to prevent such problem will be included.


口試委員會審定書 #
誌謝 ……………………………………………………………………………i
中文摘要 ……………………………………………………………………………iii
ABSTRACT iv
CONTENTS v
LIST OF FIGURES vii
LIST OF TABLES x
Chapter 1 Introduction 1
1.1 Background and Motivation 1
1.2 Radar Principles 5
1.3 Thesis Organization 6
Chapter 2 77 GHz FMCW Car Radar Transmitter 7
2.1 CW radar 8
2.2 FMCW radar features 10
2.3 FMCW radar formulas 11
Chapter 3 A miniaturized V-band PLL using differential control technique 16
3.1 Circuit Architecture 17
3.1.1 Capacitor Reduction Technique 17
3.1.2 VCO and PFD, Digital Frequency Divider 19
3.2 Circuit Simulation 21
3.3 Chip Layout & Measurement 25
3.4 Summary 34
Chapter 4 77 GHz ΔΣ Fractional-N Frequency Synthesizer in 65nm CMOS 35
4.1 Digital ΔΣ Modulator 37
4.1.1 Digital Phase Accumulator (DPA) 37
4.1.2 First-Order ΔΣ Modulator 38
4.1.3 Multi-Stage-Noise-Shaping (MASH) ΔΣ Modulators 39
4.1.4 Quantization Noise 40
4.2 The Implementation and Simulation of ΔΣ Modulator 42
4.3 Proposed Architecture 48
4.3.1 Phase Frequency Detector (PFD) 48
4.3.2 Charge Pump (CP) 49
4.3.3 Loop Filter (LF) 49
4.3.4 Voltage Controlled Oscillator (VCO) 50
4.3.5 Injection-Locked frequency divider (ILFD) 52
4.3.6 Current-Mode Logic (CML) 53
4.3.7 Multi-Modulus Divider (MMD) 54
4.3.8 Crystal Selection 55
4.3.9 Layout Consideration 56
4.3.10 Transistor-Level Simulation 57
4.4 Experimental Results 60
4.5 Summary 65
Chapter 5 Conclusions 66
REFERENCE 67



[1]Website of Ministry of Transportation and Communications: http://www.motc.gov.tw/ch/index.jsp
[2]D. M. Pozar, Microwave Engineering, 3rd ed, New York: Wiley, 2005, ch.7.
[3]Kawano, Y.; Suzuki, T.; Sato, M.; Hirose, T.; Joshin, K., "A 77GHz transceiver in 90nm CMOS," Solid-State Circuits Conference - Digest of Technical Papers, 2009. ISSCC 2009. IEEE International , vol., no., pp.310,311,311a, 8-12 Feb. 2009.
[4]Laskin, E.; Khanpour, M.; Nicolson, S.T.; Tomkins, A.; Garcia, P.; Cathelin, A.; Belot, D.; Voinigescu, S.P., "Nanoscale CMOS Transceiver Design in the 90–170-GHz Range," Microwave Theory and Techniques, IEEE Transactions on , vol.57, no.12, pp.3477,3490, Dec. 2009.
[5]Gershon J. Wheeler, Radar Fundamentals, Englewood Cliffs, N.J.: Prentice-Hall, 1967, ch.4.
[6]Bentley, J. O., “Airplane Altitude Indicating System,” U. S. Patent No. 2011392, issued August 13, 1935, application August 10, 1928.
[7]Igor V. Komarov, Sergey M. Smolskiy, Fundamentals of Short-range FM Radar, Boston : Artech House, c2003, ch.1.
[8]Graham M Brooker, “Understanding Millimetre Wave FMCW Radars,” International Conference on Sensing Technology, vol. 1, pp. 152-157, November 2005.
[9]H.-H. Hung, et. al, “A V-Band CMOS VCO With an Admittance-Transforming Cross-Coupled Pair”, JSSC 2009.
[10]H.-C. Chiu, et. al, “A Wide Tuning Range 69 GHz Push-Push VCO Using 0.18 um CMOS Technology”, MWCL 2010.
[11]José Luis González, el. al, “A 56-GHz LC-Tank VCO With 17% Tuning Range in 65-nm Bulk CMOS for Wireless HDMI,” T-MTT, 2010.
[12]Michael Kraemer, el. al, “A High Efficiency Differential 60 GHz VCO in a 65 nm CMOS Technology for WSN Applications, ” MWCL, 2011.
[13]T. Riley, M. Copeland, and T. Kwasniewski, “Delta-Sigma Modulation in Fractional-N Frequency Synthesis,” IEEE Journal of Solid-State Circuits, vol. 28, no. 5, pp. 553–559, May 1993.
[14]T. P. Kenny, T. A. D. Riley, N. M. Filiol, and M. A. Copeland, “Design and realization of a digital Δ-Σ modulator for fractional-N frequency synthesis,” IEEE Transactions on Vehicular Technology, vol. 48, no. 2, pp.510–521, March 1999.
[15]D. Salle et al., "A fully integrated 77GHz FMCW radar transmitter using a fractional-N frequency synthesizer,“ EuRAD, pp.149-152, Sep 2009.
[16]J. Lee et al., "A Fully-Integrated 77-GHz FMCW Radar Transceiver in 65-nm CMOS Technology," J. Solid-State Circuits, vol.45, no.12, pp.2746-2756, Dec 2010.
[17]Matsumura, H.; Sato, M.; Mineyama, A.; Suzuki, T.; Hara, N., "Ultra-low phase noise 76–81 GHz PLL synthesizer for FMCW radar in 65 nm CMOS," Microwave Conference Proceedings (APMC), 2012 Asia-Pacific , vol., no., pp.649,651, 4-7 Dec. 2012.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top