跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.136) 您好!臺灣時間:2025/09/20 21:34
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:詹宸豪
研究生(外文):Chen-Hao Chan
論文名稱:可應用於心臟藥物篩檢之壓電微奈米纖維束製程與系統開發
論文名稱(外文):Development of Aligned P(VDF-TrFE) Piezoelectric Nanofiber Bundles for Cardiac Drug Screening Application
指導教授:許聿翔
指導教授(外文):Yu-Hsiang Hsu
口試委員:游佳欣周涵怡林致廷吳旻憲
口試委員(外文):Jia-Shing YuHan-Yi ChouChih-Ting LinMin-Hsien Wu
口試日期:2016-07-06
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:應用力學研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:英文
論文頁數:99
中文關鍵詞:心肌細胞壓電材料壓電紡絲實驗晶片藥物即時篩檢系統
外文關鍵詞:cardiomyocytepiezoelectric materialelectrospun nanofiber bundleslab on chipreal time monitoring system
相關次數:
  • 被引用被引用:0
  • 點閱點閱:150
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
目前在心血管的研究以及藥物篩檢中,主要藉由心肌細胞的收縮表現、跳動頻率,以及其施力曲線等特徵行為作為檢驗的參數之一,發展出心肌細胞行為檢測平台,而其中以心肌細胞收縮表現的平台,並輔以微機電製程作為主軸,發展柔性結構的設計與微流體系統的設計應用最為廣泛。
然而,在目前的研究中,心肌細胞收縮表現的檢測平台,主要藉由光學儀器觀測細胞本身或柔性基材的形變量,並輔以高解析度的影像,在進行後端處理而得到形變量曲線,間接地得到細胞的施力行為,此即最為普遍得到細胞施力曲線的量測方式。為了能自動化且直接地量測到心肌細胞的施力曲線,本研究提出一種檢測平台的設計,以聚偏氟乙烯共聚合物P(VDF-TrFE) 的柔性壓電聚合材料做為壓電微奈米纖維束換能器的核心,為了使其從粉末狀到成形固化成為微奈米纖維束後可具有壓電特性,本研究開發出以壓電紡絲的製造技術,以快速地製作出多組平行陣列的壓電換能器,並結合智能結構,並同時開發1) 細胞對於壓電基材的從屬性、2) 促使細胞對壓電基材產生依附性及3) 微組織培養技術的三項仿生技術,並成功地誘導心肌微組織產生自發性的跳動。最後,本研究架設可自動化量測心肌微組織自我收縮之介面系統,成功的量測到心肌細胞的週期性收縮訊號,並能夠在投予心臟藥物後,量測到受藥物影響後改變的心臟跳動頻率,實現可自動化且直接性檢測心肌細胞施力訊號及初步藥物篩檢的目標。


In current development for cardiovascular drug discovery, the main parameters are the cardiac systolic and diastolic profiles, beating frequency, and contractile profile. Among these parameters, cardiac systolic and diastolic profiles are the most common, and the monitoring systems are usually based on flexible substrates fabricated by MEMS based microfluidic system is widespread. However, the systems for monitoring cardiac systolic and diastolic profiles are mostly based on an optical systems, and the force profiles is estimated from calculation of the deformation of cells or flexible substrates. Hence, the detection is not direct and could not directly infer relationship between cardiac contraction and drug.
To achieve a fully automatic, real-time and direct massive cardiac drug monitoring system, a platform for real-time monitoring cardiac contractile profile was developed in this study. A piezoelectric material, [poly[(vinylidenefluoride-co-trifluoroethylene]; P(VDF-TrFE:75/25)], was chosen to be the core of the transducer. It is composed of multiple nanofibers to create piezoelectric nanofiber bundles. In order to rapidly develop nanofiber bundles, the electrospinning method was applied. The parallelly oriented piezoelectric nanofiber bundles could be massively fabricated. The overall platforms could be fabricated in one day. A biomimetic substrate coating for facilitating cardiomyocyte adhesion and maturation was also developed. Furthermore, an interface system for monitoring contraction of cardiac micro-tissue was developed and could directly and automatically convert the mechanical force of cardiomyocyte to electrical signals. Also, we verified that this platform can detect cardiac contractile profile by administrating Isoproterenol and Verapamil compounds.


Acknowledgement I
摘要 III
Abstract IV
List of Figures VIII
List of Table XV
Chapter 1 Introduction 1
1.1 Background and Current Limitations of Drug Screening 3
1.2 Current Needs for Drug Screening 5
Chapter 2 Motivation and Purpose 6
Chapter 3 Literature Review 9
3.1 Electrospinning 9
3.1.1 Electrospinning Materials 11
3.1.2 The Patterned Collectors and Spinnerets for Electrospinning 16
3.1.3 The Influence of Environment on Electrospinning 22
3.1.4 The Applications of Electrospun Fibers on Tissue Engineering 25
3.2 Cardiomyocyte Microplate Platform for Drug Screening 28
3.2.1 The Electromechanical Properties of Cardiomyocyte 28
3.2.2 The Methods for Inducing Maturation of Cardiomyocyte 30
3.2.2.1 Mechanical Stimulation 30
3.2.2.2 Electrical Stimulation 33
3.2.2.3 Geometrical Inducement 39
Chapter 4 Development of Nanofiber Bundle with a Controlled Sparation 42
4.1 Material and Method 42
4.1.1 Simulation Parameters 43
4.1.2 Fabrications and Experimental Setup for Electrospinning 45
4.1.3 Sensitivity of Piezoelectric Transducer 48
4.2 Simulation and Experimental Results 49
4.2.1 Dependency of Tooth Angle 49
4.2.2 Dependency of Sharpness 53
4.2.3 Influence of Processing Time 55
4.2.4 Dependency of Pitch Distance 56
4.2.5 Dependency of Gap Distance 60
4.2.6 The Improvement for Defects in The Collector 62
4.2.7 The Sensitivity of Piezoelectric Electrospun Fibers 64
4.2.8 SEM Micrographs of Electrospun Fiber Bundles 65
Chapter 5 Cardiomyocyte Experiment 71
5.1 Material and Method 71
5.1.1 Culture Well Fabrication 71
5.1.2 Device Preparation for Culturing Cardiomyocytes 73
5.1.3 The Cardiomyocyte Culturing 74
5.1.4 The Measurement of Cell Signals 74
5.1.5 Cell Signals without Drug Using 75
5.1.6 Process of Cell Fixing 75
5.1.7 Electrophysiological Study 76
5.1.8 Process of Cell Fixing 76
5.1.9 Immunostaining 77
5.1.10 Microscope for Cell Imaging 78
5.2 Experimental Results 79
5.2.1 Cellular Signals on Substrate with/without Parylene-C Coating 79
5.2.2 Cellular Signals on Substrate with different Thickness of Titanium and SiO2
Coating 80
5.2.3 Contractile Profile of Cultured Cardiomyocytes 81
5.2.4 Cellular Signals after Treating with Isoproterenol and Verapamil 82
5.2.5 Cellular Signals after Electrical Stimulation 91
5.2.6 Time Sequence of Beating Cardiac Cells 92
5.2.7 Immunostaining Results of Cardiac Cells 94
Chapter 6 Conclusions and Future Works 95
6.1 Conclusions 95
6.2 Future Works 96
Reference 97



Bhardwaj, N. and S.C. Kundu, Electrospinning: a fascinating fiber fabrication technique. Biotechnology advances, 2010. 28(3): p. 325-347.
2.Muerza-Cascante, M.L., et al., Melt electrospinning and its technologization in tissue engineering. Tissue Engineering Part B: Reviews, 2014. 21(2): p. 187-202.
3.Yang, F., et al., Electrospinning of nano/micro scale poly (L-lactic acid) aligned fibers and their potential in neural tissue engineering. Biomaterials, 2005. 26(15): p. 2603-2610.
4.Park, S.H. and D.Y. Yang, Fabrication of aligned electrospun nanofibers by inclined gap method. Journal of applied polymer science, 2011. 120(3): p. 1800-1807.
5.Park, S.H., et al., Quantitatively controlled fabrication of uniaxially aligned nanofibrous scaffold for cell adhesion. Journal of Nanomaterials, 2011. 2011: p. 8.
6.Sill, T.J. and H.A. von Recum, Electrospinning: applications in drug delivery and tissue engineering. Biomaterials, 2008. 29(13): p. 1989-2006.
7.Lee, S.-W. and A.M. Belcher, Virus-based fabrication of micro-and nanofibers using electrospinning. Nano letters, 2004. 4(3): p. 387-390.
8.Kharaziha, M., et al., PGS: Gelatin nanofibrous scaffolds with tunable mechanical and structural properties for engineering cardiac tissues. Biomaterials, 2013. 34(27): p. 6355-6366.
9.Miklas, J.W., et al., Bioreactor for modulation of cardiac microtissue phenotype by combined static stretch and electrical stimulation. Biofabrication, 2014. 6(2): p. 024113.
10.Cheng, W., et al., Metabolic monitoring of the electrically stimulated single heart cell within a microfluidic platform. Lab on a Chip, 2006. 6(11): p. 1424-1431.
11.Werdich, A.A., et al., A microfluidic device to confine a single cardiac myocyte in a sub-nanoliter volume on planar microelectrodes for extracellular potential recordings. Lab on a Chip, 2004. 4(4): p. 357-362.
12.Cheng, W., et al., Microfluidic cell arrays for metabolic monitoring of stimulated cardiomyocytes. Electrophoresis, 2010. 31(8): p. 1405-1413.
13.Agarwal, A., et al., Microfluidic heart on a chip for higher throughput pharmacological studies. Lab on a Chip, 2013. 13(18): p. 3599-3608.
14.Xiao, Y., et al., Microfabricated perfusable cardiac biowire: a platform that mimics native cardiac bundle. Lab on a Chip, 2014. 14(5): p. 869-882.
15.Nunes, S.S., et al., Biowire: a platform for maturation of human pluripotent stem cell-derived cardiomyocytes. Nature methods, 2013. 10(8): p. 781-787.
16.Hansen, A., et al., Development of a drug screening platform based on engineered heart tissue. Circulation research, 2010. 107(1): p. 35-44.
17.Zimmermann, W.H., et al., Three-dimensional engineered heart tissue from neonatal rat cardiac myocytes. 2000.
18.Kaneko, T., K. Kojima, and K. Yasuda, An on-chip cardiomyocyte cell network assay for stable drug screening regarding community effect of cell network size. Analyst, 2007. 132(9): p. 892-898.
19.Mercola, M., A. Colas, and E. Willems, Induced pluripotent stem cells in cardiovascular drug discovery. Circulation research, 2013. 112(3): p. 534-548.
20.Marelli, M., et al., Cell force measurements in 3D microfabricated environments based on compliant cantilevers. Lab on a Chip, 2014. 14(2): p. 286-293.
21.Morimoto, Y., et al., Human induced pluripotent stem cell-derived fiber-shaped cardiac tissue on a chip. Lab on a Chip, 2016.
22.Linder, P., et al., Contractile tension and beating rates of self-exciting monolayers and 3D-tissue constructs of neonatal rat cardiomyocytes. Medical & biological engineering & computing, 2010. 48(1): p. 59-65.
23.Rodriguez, M.L., et al., Measuring the contractile forces of human induced pluripotent stem cell-derived cardiomyocytes with arrays of microposts. Journal of biomechanical engineering, 2014. 136(5): p. 051005.
24.Laroche, G., et al., Polyvinylidene fluoride (PVDF) as a biomaterial: from polymeric raw material to monofilament vascular suture. Journal of biomedical materials research, 1995. 29(12): p. 1525-1536.
25.Grosberg, A., et al., Self-organization of muscle cell structure and function. PLoS Comput Biol, 2011. 7(2): p. e1001088.
26.Zimmermann, W.-H., et al., Tissue engineering of a differentiated cardiac muscle construct. Circulation research, 2002. 90(2): p. 223-230.
27.Salameh, A., et al., Cyclic mechanical stretch induces cardiomyocyte orientation and polarization of the gap junction protein connexin43. Circulation research, 2010. 106(10): p. 1592-1602.
28.Shanker, A.J., et al., Matrix protein–specific regulation of Cx43 expression in cardiac myocytes subjected to mechanical load. Circulation research, 2005. 96(5): p. 558-566.
29.Kensah, G., et al., A novel miniaturized multimodal bioreactor for continuous in situ assessment of bioartificial cardiac tissue during stimulation and maturation. Tissue Engineering Part C: Methods, 2011. 17(4): p. 463-473.
30.Tulloch, N.L., et al., Growth of engineered human myocardium with mechanical loading and vascular coculture. Circulation research, 2011. 109(1): p. 47-59.
31.Wang, T.-L., Y.-Z. Tseng, and H. Chang, Regulation of connexin 43 gene expression by cyclical mechanical stretch in neonatal rat cardiomyocytes. Biochemical and biophysical research communications, 2000. 267(2): p. 551-557.
32.Holt, E., et al., Electrical stimulation of adult rat cardiomyocytes in culture improves contractile properties and is associated with altered calcium handling. Basic research in cardiology, 1997. 92(5): p. 289-298.
33.Chan, Y.-C., et al., Electrical stimulation promotes maturation of cardiomyocytes derived from human embryonic stem cells. Journal of cardiovascular translational research, 2013. 6(6): p. 989-999.
34.Radisic, M., et al., Functional assembly of engineered myocardium by electrical stimulation of cardiac myocytes cultured on scaffolds. Proceedings of the National Academy of Sciences, 2004. 101(52): p. 18129-18134.
35.Johnson, T.B., et al., Electrical stimulation of contractile activity accelerates growth of cultured neonatal cardiocytes. Circulation research, 1994. 74(3): p. 448-459.
36.Kim, J., et al., Quantitative evaluation of cardiomyocyte contractility in a 3D microenvironment. Journal of biomechanics, 2008. 41(11): p. 2396-2401.
37.http://www.ionoptix.com.
38.http://www.phrma.org/.
39.Shen, J.-W., A Polymer-based piezoelectric transducer for real-time monitoring contractile behavior of cardiomyocytes. Master Thesis, National Taiwan University, 2015.
40.Tucker, N., et al., The History of the Science and Technology of Electrospinning from 1600 to 1995. Journal of Engineered Fabrics & Fibers (JEFF), 2012. 7(3).
41.Greiner, A. and J.H. Wendorff, Electrospinning: a fascinating method for the preparation of ultrathin fibers. Angewandte Chemie International Edition, 2007. 46(30): p. 5670-5703.
42.Baji, A., et al., Electrospinning of polymer nanofibers: effects on oriented morphology, structures and tensile properties. Composites science and technology, 2010. 70(5): p. 703-718.
43.Li, D., Y. Wang, and Y. Xia, Electrospinning of polymeric and ceramic nanofibers as uniaxially aligned arrays. Nano letters, 2003. 3(8): p. 1167-1171.
44.Li, X.H., C.L. Shao, and Y.C. Liu, A simple method for controllable preparation of polymer nanotubes via a single capillary electrospinning. Langmuir, 2007. 23(22): p. 10920-10923.
45.Antaya, H.l.n., M. Richard-Lacroix, and C. Pellerin, Electrospinning as a new method for preparing pure polymer complexes. Macromolecules, 2010. 43(11): p. 4986-4990.
46.Li, D. and Y. Xia, Fabrication of titania nanofibers by electrospinning. Nano Letters, 2003. 3(4): p. 555-560.
47.Shui, J. and J.C. Li, Platinum nanowires produced by electrospinning. Nano letters, 2009. 9(4): p. 1307-1314.
48.Li, D., et al., Collecting electrospun nanofibers with patterned electrodes. Nano letters, 2005. 5(5): p. 913-916.
49.Katta, P., et al., Continuous electrospinning of aligned polymer nanofibers onto a wire drum collector. Nano letters, 2004. 4(11): p. 2215-2218.
50.Hardick, O., B. Stevens, and D.G. Bracewell, Nanofibre fabrication in a temperature and humidity controlled environment for improved fibre consistency. Journal of materials science, 2011. 46(11): p. 3890-3898.
51.Lannutti, J., et al., Electrospinning for tissue engineering scaffolds. Materials Science and Engineering: C, 2007. 27(3): p. 504-509.
52.Zamani, M., Advances in drug delivery via electrospun and electrosprayed nanomaterials. Int J Nanomedicine, 2013. 8(1): p. 2997-3017.
53.Hu, X., et al., Electrospinning of polymeric nanofibers for drug delivery applications. Journal of Controlled Release, 2014. 185: p. 12-21.
54.Liu, X., et al., In vivo wound healing and antibacterial performances of electrospun nanofibre membranes. Journal of biomedical materials research Part A, 2010. 94(2): p. 499-508.
55.Abrigo, M., S.L. McArthur, and P. Kingshott, Electrospun nanofibers as dressings for chronic wound care: advances, challenges, and future prospects. Macromolecular Bioscience, 2014. 14(6): p. 772-792.
56.Herman, I.P., Physics of the Human Body. 2007.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top