跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.59) 您好!臺灣時間:2025/10/14 18:23
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:鄭如劭
研究生(外文):Ju-Shao Cheng
論文名稱:合併電刺激及強調踝部控制的站立平衡訓練對痙攣型垂足之中風患者足蹠屈肌痙攣程度、平衡、步態、與大腦皮質再塑之療效
論文名稱(外文):Motor Relearning Combining Electrical Stimulation for Spastic Foot in Patients with Stroke: Effects on Dynamic Spasticity, Balance, Gait Performances and Motor Cortex Reorganization.
指導教授:王瑞瑤
指導教授(外文):Ray-Yau Wang
學位類別:碩士
校院名稱:國立陽明大學
系所名稱:物理治療暨輔助科技學系
學門:醫藥衛生學門
學類:復健醫學學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
中文關鍵詞:痙攣型垂足電刺激動作再學習步態表現大腦塑性
外文關鍵詞:Spastic footElectrical stimulationMotor relearningGait performancesCortical reorganization
相關次數:
  • 被引用被引用:0
  • 點閱點閱:530
  • 評分評分:
  • 下載下載:119
  • 收藏至我的研究室書目清單書目收藏:1
背景及目的:足踝控制是影響平衡與行走功能的重要因素之一。目前較為所知,電刺激可改善動作控制並增加大腦運動皮質的興奮度,有助臨床中風病患之恢復。合併電刺激與動作訓練在正常人可誘發大腦運動皮質的興奮性,且能短時間延續;對中風病患而言,類似的合併治療在上肢部分,有文獻證實效果比單獨運動治療或電刺激更好,且腦部亦有伴隨重組的現象發生。但合併治療對下肢的介入,以及在其動作與功能恢復及腦部運動皮質恢復的影響,目前則較少文獻探討。須進一步的研究及實證。因此,本實驗之目的為探討,給予中風後具痙攣垂足患者合併電刺激與強調踝部控制的站立平衡訓練後,對誘發其脛前肌與降低足蹠屈肌痙攣的療效,並進一步探討,此療效對平衡、步態、功能性行走與大腦運動皮質再塑的影響。研究方法:15位痙攣型垂足之中風患者,以隨機方式分派到實驗組或控制組。所有受測者皆維持常規物理治療,實驗組額外增加電刺激合併站立板輔助訓練足背屈的動作控制30分鐘與強調足踝控制的行走訓練15分鐘。控制組則接受額外一般運動30分鐘與行走訓練15分鐘,共計45分鐘。治療次數為一星期三次,為期四週,並於治療前與治療後一週內接受評估,評估項目包括(1)足背屈肌力評估;(2)動態痙攣指數;(3)動態平衡評估:身體穩定極限(Limit of stability);(4)步態評估:包含速度、空間與時間對稱性;(5)功能性行走能力:艾默利功能性行走測試 (Emory Functional Ambulation Profile); (6)穿顱磁刺激器(Transcranial magnetic stimulation):脛前肌的動作閥值(motor threshold)。研究結果以無母數分析,曼惠氏檢定(Mann-Whitney U-test)和魏氏帶符號等級考驗(Wilcoxon signed-rank test)分別比較組間和組內連續變相的差異,以卡方檢定(chi-square test)比較類別變相的差異。統計上顯著差異水準定α值為0.05。結果:兩組在改變量分析的比較上,實驗組在自選速度下行走時的動態痙攣指數(p=0.049)與空間對稱性(p=0.015)顯著改善;艾默利功能性行走測試中一般地面(p=0.049),障礙物(p=0.015),上下樓梯(p=0.005)以及總完成時間(p=0.015)皆達統計差異。而脛前肌的動作閥值則有下降的趨勢(p=0.060)。討論與總結:本研究顯示,合併電刺激與足踝動作訓練可以降低慢性中風患者足蹠屈肌動態痙攣,且伴隨著步態對稱性增加以及功能性行走能力的改善。此外,這方式的合併治療可以誘發更多大腦運動皮質的興奮,而可能進一步促使大腦重組(brain reorganization)的發生。
Background and Purpose: Ankle control is one of the most important factors for balance and gait performance after stroke. Subjects with spastic foot following stroke demonstrate abnormal muscle activation patterns which further affect the gait velocity and symmetry. Previous evidences have demonstrated that electrical stimulation (ES) combining movements can increase the excitability of the motor cortex. However, the benefits of ES combining motor relearning focusing on ankle control to balance, functional activities and motor cortex reorganization are still unclear. The purpose of the study was to investigate the effectiveness of the motor relearning combining ES for spastic foot on dynamic spasticity, balance and gait performances, and cortical activity in subjects with stroke. Methods: 15 subjects with spastic foot after stroke were recruited and randomly assigned to experimental or control group. Subjects in the experimental group received 12 sessions of ES combining ankle movements challenged by a rocker board in standing for 30 minutes followed by 15 minutes ambulation training focusing on the ankle control. Subjects in the control group received general exercises for 30 minutes followed by 15 minutes ambulation training without focusing on the ankle control each session for a total of 12 sessions. All subjects received the baseline and post-treatment assessments. Maximal isometric strength of dorsiflexors was measured by a handheld dynamometer. Dynamic spasticity of plantarflexor during gait was measured to quantify the change of spasticity. Limit of stability (LOS) indicating the balance performance was measured by the Balance Master. Spatial and temporal gait parameters were measured by GAITRite system to document the gait performance. The Emory Functional Ambulation Profile (E-FAP) was used for measuring the functional gait performance. Transcranial magnetic stimulation (TMS) was used to obtain motor threshold of bilateral tibialis anterior (TA) for cortical excitability. Mann-Whitney U-test was used to compare continuous variables between groups, and chi-square test was used to compare categorical variables between groups. Wilcoxon signed-rank test was used to analyze the training effects within group. Significant level was set at 0.05. Results: Based on the change scores for between group comparison, the experimental group demonstrated significantly decrease in dynamic spasticity at self-selected speed (p=0.049), significant improvement in spatial symmetry (p=0.015), significant decrease in time spent of total E-FAP time (p=0.015), and the subtasks, including floor (p=0.049), obstacles (p=0.015), and stairs (p=0.005). The motor threshold of affected TA was also decreased, but not to a significant level (p=0.060). Discussion and conclusion: Our results suggest that electrical stimulation combining ankle movements can decrease the ankle spasticity in subjects with chronic stroke. Furthermore, the improvement concurs with better gait symmetry and functional gait performances. In addition, such combining treatment might facilitate stronger cortical excitability and possibly brain reorganization.
Index……………………………………………………………………...…………………..I
List of tables…………………………………………………………………….………...…V
List of figures………………………………………………………………………………VI
English abstract…………………………………………………………………………. VIII
Chinese abstract……………………………………………………..…………………..….X
List of abbreviations…………………………………………………..…..………………XII

CHAPTER I INTRODUCTION……………………………………………………….…1

CHAPTER II LITERATURE REVIEW……………………………………………..……4
2.1 The influence of the lower limb impairments on balance and gait performances
after stroke……………………………………………….…………………………...4
2.2 Abnormal muscle activation in the ankle joint after stroke………………….…....…5
2.3 Abnormal gait performance after stroke…………………………………….…....….6
2.4 Interventions to improve ankle control in subjects after stroke…………….…..…...7
2.4.1 Electrical stimulation……………………………………………….…...…...7
2.4.2 Motor relearning…………………………………………………………..…8
2.4.3 Electrical stimulation combined with movements……………………......…8
2.4.3.1 The possible mechanisms for spasticity reduction……………...…...10
2.5 Cortical reorganization: TMS………………………………………………………10
2.6 Summary of the literature review……………………………………….…..……..11
2.7 Importance and purpose of the study…………………………………….…..….…11


CHAPTER III METHODS…………………………………………………….………..13
3.1 Study design…………………………………………………………….…….……13
3.2 Subjects…………………………………………………………….…………..…..13
3.3 Protocol…………………………………………………………………….……....14
3.4 Measurements……………………………………………………………….……..14
3.4.1 Demographic data…………………………………………….………….…15
3.4.2 Motor function………………………………………………….…………..15
3.4.2.1 Muscle strength of dorsiflexors……………………………………..15
3.4.2.2 Dynamic spasticity of plantarflexors……………………………..…15
3.4.2.3 Balance performances…………………………………………….....17
3.4.2.4 Gait performances…………………….…………………………..…17
3.4.2.4.1 The GAITRite system………………………………………..17
3.4.2.5 The Emory Functional Ambulation Profile…………….………..….18
3.4.3 Cortical activity……………………………………………….……………19
3.5 Intervention………………………………………………………….…………......19
3.5.1 Instruments………………………………………………………………….19
3.5.2 Training protocols…………………………………………………………..20
3.6 Data analysis……………………………………………………………………….21

CHAPTER IV RESULTS……………………………………………………………….….22
4.1 Demographic and basic data…………………………………………….……….…22
4.2 Muscle strength of dorsiflexors………………………………………….……...…..22
4.3 Dynamic spasticity of plantarflexors………………………………….…………….23
4.4 Dynamic balance performance: limit of stability………………….………...….…..23
4.4.1 Forward direction……………………………………………………..….…..23
4.4.1.1 MXE……………………………………………………………..…. ..23
4.4.2 Non-affected side direction…………………………….……….…………23
4.4.2.1 MXE……………………………………………………..………….23
4.4.3 Backward direction……………………………………………..………….24
4.4.3.1 MXE……………………….………………………….….…………24
4.4.4 Affected side direction…………….………………………….….…….…..24
4.4.4.1 MXE…………………………………………………….….……….24
4.5 Gait parameters…………….………………………………………….….………..24
4.5.1 Self-selected speed…………………………………………….….………..24
4.5.2 Spatial asymmetry ratio………………………………………..….……..…24
4.5.3 Temporal asymmetry ratio……………………………………..….………..25
4.6 Functional gait performances: the E-FAP……………………………..….………..25
4.6.1 Floor……………………………………………………………..….………25
4.6.2 Up & go………………………………………………………….…..……...25
4.6.3 Obstacles…………………………………………………………..….…….26
4.6.4 Stairs……………………………………………………………...…………26
4.6.5 Total…………………………………………………………………..…..…26
4.7 Cortical activity…………………………………………………………….….…...27
4.7.1 Motor threshold of TA in the affected hemisphere………………….….…..27
4.7.2 Asymmetry ratio of motor threshold of TA between both hemispheres……27
4.7.3 Number of subjects whose TA motor threshold can be induced…..…….…..27

CHAPTER V DISCUSSION…………………………………………….………………...28
5.1 Characteristics of subjects with stroke in both groups…………………..…….…..28
5.2 Muscle strength of dorsiflexors………………………………………….……..….28
5.3 Dynamic spasticity of plantarflexors………………………………………..….….29
5.4 Dynamic balance: LOS……………………………………………………….…....30
5.5 Gait performances…………………………………………………………………30
5.5.1 Self-selected speed…………………………………………………………30
5.5.2 Spatial asymmetry ratio…………………………….………………………31
5.5.3 Temporal asymmetry ratio………………………….………………………31
5.6 Functional gait performance: E-FAP……………………….……………………...32
5.7 Cortical activity: motor threshold of TA…………………….……………………..33
5.8 Limitations of the study……………………………………….……….…………..34
5.9 Recommendations for future studies………………………….…………………...34

CHAPTER VI CONCLUSION………………………………………………………….35

REFERENCES……………………………………………………………………………..36

Appendix A…………………………….……………………………….…………..……….69
Appendix B……………………………………………………………….…………………70
REFERENCES

1. Goldie PA, Bach TM, Evans OM. Force platform measures for evaluating postural control: reliability and validity. Arch Phys Med Rehabil 1989;70:510-7.
2. de Haart M, Geurts AC, Huidekoper SC, Fasotti L, van Limbeek J. Recovery of standing balance in postacute stroke patients: a rehabilitation cohort study. Arch Phys Med Rehabil 2004;85:886-95.
3. Bonan IV, Yelnik AP, Colle FM, Michaud C, Normand E, Panigot B et al. Reliance on visual information after stroke. Part II: Effectiveness of a balance rehabilitation program with visual cue deprivation after stroke: a randomized controlled trial. Arch Phys Med Rehabil 2004;85:274-8.
4. Nichols DS. Balance retraining after stroke using force platform biofeedback. Phys Ther 1997;77:553-8.
5. Dault MC, de Haart M, Geurts AC, Arts IM, Nienhuis B. Effects of visual center of pressure feedback on postural control in young and elderly healthy adults and in stroke patients. Hum Mov Sci 2003;22:221-36.
6. Laufer Y, Dickstein R, Resnik S, Marcovitz E. Weight-bearing shifts of hemiparetic and healthy adults upon stepping on stairs of various heights. Clin Rehabil 2000;14:125-9.
7. Marigold DS, Eng JJ. The relationship of asymmetric weight-bearing with postural sway and visual reliance in stroke. Gait Posture 2006;23:249-55.
8. Chen CL, Chen HC, Tang SF, Wu CY, Cheng PT, Hong WH. Gait performance with compensatory adaptations in stroke patients with different degrees of motor recovery. Am J Phys Med Rehabil 2003;82:925-35.
9. Chen G, Patten C, Kothari DH, Zajac FE. Gait differences between individuals with post-stroke hemiparesis and non-disabled controls at matched speeds. Gait Posture 2005;22:51-6.
10. Hsu AL, Tang PF, Jan MH. Analysis of impairments influencing gait velocity and asymmetry of hemiplegic patients after mild to moderate stroke. Arch Phys Med Rehabil 2003;84:1185-93.
11. Lin PY, Yang YR, Cheng SJ, Wang RY. The relation between ankle impairments and gait velocity and symmetry in people with stroke. Arch Phys Med Rehabil 2006;87:562-8.
12. Patterson KK, Parafianowicz I, Danells CJ, Closson V, Verrier MC, Staines WR et al. Gait asymmetry in community-ambulating stroke survivors. Arch Phys Med Rehabil 2008;89:304-10.
13. Lamontagne A, Malouin F, Richards CL. Locomotor-specific measure of spasticity of plantarflexor muscles after stroke. Arch Phys Med Rehabil 2001;82:1696-704.
14. Lamontagne A, Richards CL, Malouin F. Coactivation during gait as an adaptive behavior after stroke. J Electromyogr Kinesiol 2000;10:407-15.
15. Johnson CA, Burridge JH, Strike PW, Wood DE, Swain ID. The effect of combined use of botulinum toxin type A and functional electric stimulation in the treatment of spastic drop foot after stroke: a preliminary investigation. Arch Phys Med Rehabil 2004;85:902-9.
16. Hesse S, Jahnke MT, Luecke D, Mauritz KH. Short-term electrical stimulation enhances the effectiveness of Botulinum toxin in the treatment of lower limb spasticity in hemiparetic patients. Neurosci Lett 1995;201:37-40.
17. Rioult-Pedotti MS, Friedman D, Hess G, Donoghue JP. Strengthening of horizontal cortical connections following skill learning. Nat Neurosci 1998;1:230-4.
18. Ziemann U, Ilic TV, Pauli C, Meintzschel F, Ruge D. Learning modifies subsequent induction of long-term potentiation-like and long-term depression-like plasticity in human motor cortex. J Neurosci 2004;24:1666-72.
19. Krutky MA, Perreault EJ. Motor cortical measures of use-dependent plasticity are graded from distal to proximal in the human upper limb. J Neurophysiol 2007;98:3230-41.
20. Ackerley SJ, Stinear CM, Byblow WD. The effect of coordination mode on use-dependent plasticity. Clin Neurophysiol 2007;118:1759-66.
21. Kimberley TJ, Lewis SM, Auerbach EJ, Dorsey LL, Lojovich JM, Carey JR. Electrical stimulation driving functional improvements and cortical changes in subjects with stroke. Exp Brain Res 2004;154:450-60.
22. Khaslavskaia S, Sinkjaer T. Motor cortex excitability following repetitive electrical stimulation of the common peroneal nerve depends on the voluntary drive. Exp Brain Res 2005;162:497-502.
23. Kido Thompson A, Stein RB. Short-term effects of functional electrical stimulation on motor-evoked potentials in ankle flexor and extensor muscles. Exp Brain Res 2004;159:491-500.
24. Khaslavskaia S, Ladouceur M, Sinkjaer T. Increase in tibialis anterior motor cortex excitability following repetitive electrical stimulation of the common peroneal nerve. Exp Brain Res 2002;145:309-15.
25. Knash ME, Kido A, Gorassini M, Chan KM, Stein RB. Electrical stimulation of the human common peroneal nerve elicits lasting facilitation of cortical motor-evoked potentials. Exp Brain Res 2003;153:366-77.
26. Smith GV, Alon G, Roys SR, Gullapalli RP. Functional MRI determination of a dose-response relationship to lower extremity neuromuscular electrical stimulation in healthy subjects. Exp Brain Res 2003;150:33-9.
27. Bhatt E, Nagpal A, Greer KH, Grunewald TK, Steele JL, Wiemiller JW et al. Effect of finger tracking combined with electrical stimulation on brain reorganization and hand function in subjects with stroke. Exp Brain Res 2007;182:435-47.
28. Bakhtiary AH, Fatemy E. Does electrical stimulation reduce spasticity after stroke? A randomized controlled study. Clin Rehabil 2008;22:418-25.
29. Cauraugh JH, Kim SB. Chronic stroke motor recovery: duration of active neuromuscular stimulation. J Neurol Sci 2003;215:13-9.
30. Ng SS, Hui-Chan CW. Transcutaneous electrical nerve stimulation combined with task-related training improves lower limb functions in subjects with chronic stroke. Stroke 2007;38:2953-9.
31. Santos M, Zahner LH, McKiernan BJ, Mahnken JD, Quaney B. Neuromuscular electrical stimulation improves severe hand dysfunction for individuals with chronic stroke: a pilot study. J Neurol Phys Ther 2006;30:175-83.
32. Bertolasi L, Priori A, Tinazzi M, Bertasi V, Rothwell JC. Inhibitory action of forearm flexor muscle afferents on corticospinal outputs to antagonist muscles in humans. J Physiol 1998;511:947-56.
33. Levin MF, Hui-Chan CW. Relief of hemiparetic spasticity by TENS is associated with improvement in reflex and voluntary motor functions. Electroencephalogr Clin Neurophysiol 1992;85:131-42.
34. Janssen TW, Beltman JM, Elich P, Koppe PA, Konijnenbelt H, de Haan A et al. Effects of electric stimulation-assisted cycling training in people with chronic stroke. Arch Phys Med Rehabil 2008;89:463-9.
35. Holt RR, Simpson D, Jenner JR, Kirker SG, Wing AM. Ground reaction force after a sideways push as a measure of balance in recovery from stroke. Clin Rehabil 2000;14:88-95.
36. Cheng PT, Liaw MY, Wong MK, Tang FT, Lee MY, Lin PS. The sit-to-stand movement in stroke patients and its correlation with falling. Arch Phys Med Rehabil 1998;79:1043-6.
37. Cheng PT, Wu SH, Liaw MY, Wong AM, Tang FT. Symmetrical body-weight distribution training in stroke patients and its effect on fall prevention. Arch Phys Med Rehabil 2001;82:1650-4.
38. Au-Yeung SS, Ng JT, Lo SK. Does balance or motor impairment of limbs discriminate the ambulatory status of stroke survivors? Am J Phys Med Rehabil 2003;82:279-83.
39. Nadeau S, Arsenault AB, Gravel D, Bourbonnais D. Analysis of the clinical factors determining natural and maximal gait speeds in adults with a stroke. Am J Phys Med Rehabil 1999;78:123-30.
40. Soyuer F, Ozturk A. The effect of spasticity, sense and walking aids in falls of people after chronic stroke. Disabil Rehabil 2007;29:679-87.
41. Lamontagne A, Malouin F, Richards CL, Dumas F. Mechanisms of disturbed motor control in ankle weakness during gait after stroke. Gait Posture 2002;15:244-55.
42. Balasubramanian CK, Bowden MG, Neptune RR, Kautz SA. Relationship between step length asymmetry and walking performance in subjects with chronic hemiparesis. Arch Phys Med Rehabil 2007;88:43-9.
43. Morita H, Crone C, Christenhuis D, Petersen NT, Nielsen JB. Modulation of presynaptic inhibition and disynaptic reciprocal Ia inhibition during voluntary movement in spasticity. Brain 2001;124:826-37.
44. Crone C, Nielsen J, Petersen N, Ballegaard M, Hultborn H. Disynaptic reciprocal inhibition of ankle extensors in spastic patients. Brain 1994;117:1161-8.
45. Morita H, Shindo M, Momoi H, Yanagawa S, Ikeda S, Yanagisawa N. Lack of modulation of Ib inhibition during antagonist contraction in spasticity. Neurology 2006;67:52-6.
46. Chung SG, van Rey E, Bai Z, Rymer WZ, Roth EJ, Zhang LQ. Separate quantification of reflex and nonreflex components of spastic hypertonia in chronic hemiparesis. Arch Phys Med Rehabil 2008;89:700-10.
47. Lamontagne A, Malouin F, Richards CL. Contribution of passive stiffness to ankle plantarflexor moment during gait after stroke. Arch Phys Med Rehabil 2000;81:351-8.
48. Knutsson E, Richards C. Different types of disturbed motor control in gait of hemiparetic patients. Brain 1979;102:405-30.
49. Wall JC, Turnbull GI. Gait asymmetries in residual hemiplegia. Arch Phys Med Rehabil 1986;67:550-3.
50. Sheffler LR, Hennessey MT, Naples GG, Chae J. Peroneal nerve stimulation versus an ankle foot orthosis for correction of footdrop in stroke: impact on functional ambulation. Neurorehabil Neural Repair 2006;20:355-60.
51. Yavuzer G, Geler-Kulcu D, Sonel-Tur B, Kutlay S, Ergin S, Stam HJ. Neuromuscular electric stimulation effect on lower-extremity motor recovery and gait kinematics of patients with stroke: a randomized controlled trial. Arch Phys Med Rehabil 2006;87:536-40.
52. Burridge JH, McLellan DL. Relation between abnormal patterns of muscle activation and response to common peroneal nerve stimulation in hemiplegia. J Neurol Neurosurg Psychiatry 2000;69:353-61.
53. Taylor PN, Burridge JH, Dunkerley AL, Wood DE, Norton JA, Singleton C et al. Clinical use of the Odstock dropped foot stimulator: its effect on the speed and effort of walking. Arch Phys Med Rehabil 1999;80:1577-83.
54. Burridge JH, Taylor PN, Hagan SA, Wood DE, Swain ID. The effects of common peroneal stimulation on the effort and speed of walking: a randomized controlled trial with chronic hemiplegic patients. Clin Rehabil 1997;11:201-10.
55. Ridding MC, Taylor JL, Rothwell JC. The effect of voluntary contraction on cortico-cortical inhibition in human motor cortex. J Physiol 1995;487:541-8.
56. Carr JH, Shepherd RB. A motor relearning pregramme for stroke Aspen Systems Corporation 1986.
57. Brasil-Neto JP, Cohen LG, Pascual-Leone A, Jabir FK, Wall RT, Hallett M. Rapid reversible modulation of human motor outputs after transient deafferentation of the forearm: a study with transcranial magnetic stimulation. Neurology 1992;42:1302-6.
58. Jacobs KM, Donoghue JP. Reshaping the cortical motor map by unmasking latent intracortical connections. Science 1991;251:944-7.
59. Woody CD, Gruen E, Birt D. Changes in membrane currents during Pavlovian conditioning of single cortical neurons. Brain Res 1991;539:76-84.
60. Rosenkranz K, Kacar A, Rothwell JC. Differential modulation of motor cortical plasticity and excitability in early and late phases of human motor learning. J Neurosci 2007;27:12058-66.
61. Kleim JA, Hogg TM, VandenBerg PM, Cooper NR, Bruneau R, Remple M. Cortical synaptogenesis and motor map reorganization occur during late, but not early, phase of motor skill learning. J Neurosci 2004;24:628-33.
62. Cauraugh JH, Kim SB, Duley A. Coupled bilateral movements and active neuromuscular stimulation: intralimb transfer evidence during bimanual aiming. Neurosci Lett 2005;382:39-44.
63. Yavuzer G, Oken O, Atay MB, Stam HJ. Effect of sensory-amplitude electric stimulation on motor recovery and gait kinematics after stroke: a randomized controlled study. Arch Phys Med Rehabil 2007;88:710-4.
64. Wu CW, Seo HJ, Cohen LG. Influence of electric somatosensory stimulation on paretic-hand function in chronic stroke. Arch Phys Med Rehabil 2006;87:351-7.
65. Peurala SH, Pitkanen K, Sivenius J, Tarkka IM. Cutaneous electrical stimulation may enhance sensorimotor recovery in chronic stroke. Clin Rehabil 2002;16:709-16.
66. Barker AT, Jalinous R, Freeston IL. Non-invasive magnetic stimulation of human motor cortex. Lancet 1985;1:1106-7.
67. Butefisch CM, Kleiser R, Seitz RJ. Post-lesional cerebral reorganisation: evidence from functional neuroimaging and transcranial magnetic stimulation. J Physiol Paris 2006;99:437-54.
68. Brouwer BJ, Schryburt-Brown K. Hand function and motor cortical output poststroke: are they related? Arch Phys Med Rehabil 2006;87:627-34.
69. Traversa R, Cicinelli P, Pasqualetti P, Filippi M, Rossini PM. Follow-up of interhemispheric differences of motor evoked potentials from the 'affected' and 'unaffected' hemispheres in human stroke. Brain Res 1998;803:1-8.
70. Trompetto C, Assini A, Buccolieri A, Marchese R, Abbruzzese G. Motor recovery following stroke: a transcranial magnetic stimulation study. Clin Neurophysiol 2000;111:1860-7.
71. Butefisch CM, Netz J, Wessling M, Seitz RJ, Homberg V. Remote changes in cortical excitability after stroke. Brain 2003;126:470-81.
72. Piron L, Piccione F, Tonin P, Dam M. Clinical correlation between motor evoked potentials and gait recovery in poststroke patients. Arch Phys Med Rehabil 2005;86:1874-8.
73. Hendricks HT, Pasman JW, van Limbeek J, Zwarts MJ. Motor evoked potentials of the lower extremity in predicting motor recovery and ambulation after stroke: a cohort study. Arch Phys Med Rehabil 2003;84:1373-9.
74. Perotto AO. Anatomical guide for the electromyographer: the limbs and trunk. Springfield: CC Thomas; 1994.
75. Norkin CC, DJ W. Measurement of joint motion: a guide to goniometry. Philadelphia: FA Davis 2003.
76. Winter DA, Scott SH. Technique for interpretation of electromyography for concentric and eccentric contractions in gait. J Electromyogr Kinesiol 1991;1:263-9.
77. Baker JG. Neurocom system operator's manual. Clackamas, OR, USA: NeuroCom International, Inc.; 2001.
78. Bilney B, Morris M, Webster K. Concurrent related validity of the GAITRite walkway system for quantification of the spatial and temporal parameters of gait. Gait Posture 2003;17:68-74.
79. McDonough AL, Batavia M, Chen FC, Kwon S, Ziai J. The validity and reliability of the GAITRite system's measurements: A preliminary evaluation. Arch Phys Med Rehabil 2001;82:419-25.
80. Wolf SL, Catlin PA, Gage K, Gurucharri K, Robertson R, Stephen K. Establishing the reliability and validity of measurements of walking time using the Emory Functional Ambulation Profile. Phys Ther 1999;79:1122-33.
81. Yen CL, Wang RY, Liao KK, Huang CC, Yang YR. Gait training induced change in corticomotor excitability in patients with chronic stroke. Neurorehabil Neural Repair 2008;22:22-30.
82. Liepert J, Bauder H, Wolfgang HR, Miltner WH, Taub E, Weiller C. Treatment-induced cortical reorganization after stroke in humans. Stroke 2000;31:1210-6.
83. Kamper DG, Yasukawa AM, Barrett KM, Gaebler-Spira DJ. Effects of neuromuscular electrical stimulation treatment of cerebral palsy on potential impairment mechanisms: a pilot study. Pediatr Phys Ther 2006;18:31-8.
84. Powell J, Pandyan AD, Granat M, Cameron M, Stott DJ. Electrical stimulation of wrist extensors in poststroke hemiplegia. Stroke 1999;30:1384-9.
85. Glanz M, Klawansky S, Stason W, Berkey C, Chalmers TC. Functional electrostimulation in poststroke rehabilitation: a meta-analysis of the randomized controlled trials. Arch Phys Med Rehabil 1996;77:549-53.
86. Levin MF, Hui-Chan C. Ankle spasticity is inversely correlated with antagonist voluntary contraction in hemiparetic subjects. Electromyogr Clin Neurophysiol 1994;34:415-25.
87. Thilmann AF, Fellows SJ, Garms E. The mechanism of spastic muscle hypertonus. Variation in reflex gain over the time course of spasticity. Brain 1991;114:233-44.
88. Selles RW, Li X, Lin F, Chung SG, Roth EJ, Zhang LQ. Feedback-controlled and programmed stretching of the ankle plantarflexors and dorsiflexors in stroke: effects of a 4-week intervention program. Arch Phys Med Rehabil 2005;86:2330-6.
89. Yang YR, Wang RY, Lin KH, Chu MY, Chan RC. Task-oriented progressive resistance strength training improves muscle strength and functional performance in individuals with stroke. Clin Rehabil 2006;20:860-70.
90. Salbach NM, Mayo NE, Wood-Dauphinee S, Hanley JA, Richards CL, Cote R. A task-orientated intervention enhances walking distance and speed in the first year post stroke: a randomized controlled trial. Clin Rehabil 2004;18:509-19.
91. Kim CM, Eng JJ. Symmetry in vertical ground reaction force is accompanied by symmetry in temporal but not distance variables of gait in persons with stroke. Gait Posture 2003;18:23-8.
92. Chou LS, Kaufman KR, Brey RH, Draganich LF. Motion of the whole body's center of mass when stepping over obstacles of different heights. Gait Posture 2001;13:17-26.
93. Said CM, Goldie PA, Patla AE, Culham E, Sparrow WA, Morris ME. Balance during obstacle crossing following stroke. Gait Posture 2008;27:23-30.
94. Flansbjer UB, Downham D, Lexell J. Knee muscle strength, gait performance, and perceived participation after stroke. Arch Phys Med Rehabil 2006;87:974-80.
95. Traversa R, Cicinelli P, Oliveri M, Giuseppina Palmieri M, Filippi MM, Pasqualetti P et al. Neurophysiological follow-up of motor cortical output in stroke patients. Clin Neurophysiol 2000;111:1695-703.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top