跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.158) 您好!臺灣時間:2025/12/01 09:01
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:李瑋婷
研究生(外文):Wei-Ting Lee
論文名稱:深水型人工溼地水力效率改善之研析
論文名稱(外文):Hydraulic Efficiency Improvement of Deep Water Constructed Wetlands
指導教授:張倉榮張倉榮引用關係
指導教授(外文):Tsang-Jung Chang
口試委員:蔡宛珊施上粟任秀慧
口試日期:2014-06-17
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:生物環境系統工程學研究所
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:137
中文關鍵詞:人工溼地水深滯留時間分佈平均滯留時間水力效率數值試驗
外文關鍵詞:Constructed WetlandWater DepthResidence Time DistributionHydraulic EfficiencyNumerical Experiment
相關次數:
  • 被引用被引用:4
  • 點閱點閱:988
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
  近年來,汙水處理系統將人工溼地設為其淨化單元之一,故本論文針對其人工溼地處理單元做進一步的研究。表面流人工溼地之水深受限於水力效率的要求,設計上一般控制在0.15至0.8公尺間。但受限的面積及水深讓人工溼地處理的水量不足應付新的汙水之產生,同時也降低其附加的遲滯洪水功能,在溼地面積不足下,實務上僅能藉由加深人工溼地深度來增加水質及洪水的處理量,故如何在有限的面積使人工溼地加深卻又能提高其水力效率是很重要的課題。本研究發現當空池水深大於0.72公尺,溼地之水力效率即呈不佳狀態,因此,深入探討水深超過0.8公尺之深水型人工溼地,並提出有效的水力效率改善方式。
  為有效提升深水型人工溼地之水力效率,本研究主要以增加障礙物的方式為之,並分析浸沒式與非浸沒式的改善效率差異。首先,藉由障礙物的排數與擺放方式進行改善。在相同水深下,以均勻擺放在浸沒情形與非浸沒情形及序列擺放在浸沒情形與非浸沒情形,模擬障礙物排數累加擺放之改善效率。接著,再選擇2、8及12排障礙物分別在浸沒與非浸沒情形下,模擬均勻與序列擺放時之可接受水深,並相互比較。研究結果發現,當均勻或序列擺放障礙物時,障礙物在非浸沒下所能處理的水深明顯優於浸沒情形;此外,障礙物在非浸沒情形下,均勻或序列擺放能達到可接受水力效率之水深則明顯優於浸沒情形。因此,本研究認為適當的增加「非浸沒式障礙物」有機會同時滿足高水深及高水力效率的要求。


Recently, the constructed wetland (CW) has been included one of the units in the wastewater treatment system. In this thesis, the further research for this CW unit was conducted. The water depth of free water surface CW is bounded by performance of hydraulic efficiency. The design of the CW is thus ranging from 0.15 to 0.8 meter in practice. However, it would decrease the capacity of flooding detention volume due to the restriction of serious land use and limited area. Increasing the depth of CW is one of the most effective ways to increase not only the quality of treated water but also the quantity of flood detention. Therefore, the way of improving the hydraulic efficiency of deep water is critical. The poor hydraulic efficiency appeared when the water depth is over 0.72 meter.
In this study, to improve the hydraulic efficiency of deep water CW, the placement of obstructions is adopted as the treatment. First, the improvements are conducted through the amount and the arrangement ways of the obstructions. And then, the selected cases of placing 2, 8 and 12 obstructions in submerged or emerged situation are used to tested the acceptable water depths in both uniform and sequence arrangements. The results show that when the obstructions are in either uniform or sequence way, the obstructions in the emerged condition have better improvements. Furthermore, when obstructions are under the emerged condition in either uniform or sequence arranging way, the acceptable water depth can be deeper. Thus properly increasing emerged obstructions can achieve the purposes of deep water depth and high hydraulic efficiency at the same time.


摘要 I
Abstract II
目錄 III
表目錄 VI
圖目錄 VIII
第一章 緒論 1
1.1 研究緣起 1
1.2 研究動機與目的 2
1.3研究架構 4
第二章 文獻回顧 7
2.1 埤塘 7
2.2 人工溼地 8
2.3 水力效率與有效體積 9
2.3.1 死水區與混合區 10
2.4 水力效率相關研究 10
2.4.1 形狀 10
2.4.2 阻擋結構物 12
2.4.3水深差異 13
2.5 滯留時間截取與有效體積相關研究 13
第三章 研究方法 23
3.1 二維深度平均水理、水質模式(TABS-2) 24
3.1.1 水理模組(RMA2) 24
3.1.2 水質模組(RMA4) 26
3.2 模式操作 27
3.2.1 水理模組建立 27
3.2.2 水質模組建立 28
3.3 滯留時間分佈(Residence Time Distribution, RTD) 29
3.3.1 汙水混合反應槽 31
3.4 水力效率評估 32
3.4.1 有效體積比(Effective Volume Ratio) 32
3.4.2 分散指標(N) 33
3.4.3 水力效率(Hydraulic Efficiency) 35
第四章 擺放障礙物排數之模擬與討論 40
4.1 空池模擬 41
4.2 障礙物均勻擺放排數模擬 42
4.2.1 浸沒式擺放 43
4.2.2 非浸沒式擺放 43
4.3 障礙物序列擺放排數模擬 44
4.3.1 浸沒式擺放 44
4.3.2 非浸沒式擺放 45
4.4 均勻與序列擺放障礙物之綜合結果討論 46
第五章 浸沒與非浸沒情形下均勻與序列擺放之水深模擬 70
5.1 浸沒式與非浸沒式障礙物在均勻擺放情形下之水深 71
5.1.1 浸沒情形 71
5.1.2 非浸沒情形 73
5.1.3 小結 74
5.2 浸沒式與非浸沒式障礙物在序列擺放情形下之水深 74
5.2.1 浸沒情形 75
5.2.2 非浸沒情形 76
5.2.3 小結 77
5.3 浸沒式障礙物在均勻與序列擺放情形下之水深 77
5.4 非浸沒式障礙物在均勻與序列擺放情形下之水深 78
第六章 結論與建議 128
6.1 結論 128
6.2 建議 130
參考文獻 133


1.Alcocer, D.J.R., Vallejos, G.G. and Champagne, P., (2012), Assessment of the Plug Flow and Dead Volume Ratios in a Sub-surface Horizontal-flow Packed-bed Reactor as a Representative Model of a Sub-surface Horizontal Constructed Wetland. Ecological Engineering 40: 18-26.
2.Bodin, H. and Persson, J., (2012), Hydraulic performance of small free water surface constructed wetlands treating sugar factory effluent in western Kenya.Hydrology Research 43: 476-488.
3.Bodin, H., Persson, J., Englund, J.E. and Milberg, P., (2013), Influence of residence time analyses on estimates of wetland hydraulics and pollutant removal. Journal of Hydrology 501: 1-12.
4.Chow, V.T., Maidment, D.R. and Mays, L.W., (1988), Applied Hydrology, McGraw-Hill: 127.
5.Dierberg, F.E., Juston, J.J., Debusk, T.A., Pietro, K. and Gu, B., (2005), Relationship between hydraulic efficiency and phosphorus removal in a submerged aquatic vegetation-dominated treatement wetland. Ecological Engineering 25: 9-23.
6.Fogler H.S., (2006), Elements of Chemical Reaction Engineering 4th edition. Upper Saddle River, NJ.


7.German J., K. Jansons, G. Svensson, D. Karlsson and L.G. Gustafsson, (2005), Modelling of different measures for improving removal in a stormwater pond. Water Science &; Technology 52(5): 105-112.
8.Gray, J.L. and Sedlak, D.L., 2005. The fate of estrogenic hormones in an engineered treatment wetland with dense macorphytes. Water Environment Research 77: 24-31.
9.Holland, J.F., Martin, J.F., Granata, T., Bouchard, V., Quigley, M. and Brown, L., (2004), Effects of Wetland Depth and Flow Rate on Residence Time Distribution Characteristics. Ecological Engineering 23: 189-203.
10.Kadlec, R.H., (1994), Detention and Mixing in Free Water Wetlands. Ecological Engineering 3: 345-380.
11.Kadlec, R.H. and Wallace, S.D., (2009), Treatment wetlands. Second, CRC Press Inc., Boca Raton, Florida.
12.Kadlec, R. and Knight, R., (1996), Treatment wetlands, CRC Press, Lewis Publishers: 892.
13.Keefe, S.H., Barber, L.B., Runkel, R.L., Ryan, J.N., McKnight, D.M. and Wass, R., (2004), Conservation and reactive solute transport in constructed wetlands. Water Resources Research 40: W012011-W012012.


14.Keefe, S.H., Daniels (Thullen), J.S., Runkel, R.L. and Wass, R.D., (2010). Influence of hummocks and emergent vegetation on hydraulic performance in a surface flow wastewater treatment wetland. Water Resources Research 46: 1-13.
15.King, I., (2001a), Users Guide to RMA2 WES Version 4.5. USACE Waterways Experiment Station.
16.King, I., (2001b), Users Guide to RMA2 WES Version 4.5. USACE Waterways Experiment Station.
17.Kjellin, J., Worman, A., Johansson, H. and Lindahl, A., (2007), Controlling factors for water residence time and flow patterns in Ekeby treatment wetland, Sweden. Advances in Water Resources 30: 838-850.
18.Koshiaho, J., (2003), Flow velocity retardation and sediment retention in two constructed wetland-ponds. Ecological Engineering 19: 325-337.
19.Levenspiel, O., (1999), Chemical Reaction Enginnering, 3rd edition. John Wiley &; Sons, USA.
20.Persson, J., Somes N.L.G., and Wong, T.H.F., (1999), Hydraulics Efficiency of Constructed Wetlands and Ponds. Water Science and Technology 40(3): 291-300.
21.Rash, J.K. and Liehr, S.K., (1999), Flow pattern analysis of constructed watlands treating landfill leachate. Water Science and Technology 40: 309-315.
22.Shih, S.S., Kuo, P.H., Fang, W.T. and Ben A. LePage, (2013), A correction coefficient for pollutant removal in free water surfacewetlands using first-order modeling. Ecological Engineering 61: 200-206.
23.Su, T.M., Yang, S.C., Shih, S.S. and Lee, H.Y., (2009), Optimal design for hydraulic efficiency performance of free-water-surface constructed wetlands. Ecological Engineering 35: 1200-1207.
24.Sylvia, T., Richard S. P.,Logetestijn, V., Kampf, R., Schreijer, M. and Verhoeven, T.A., (2005), The Effect of Hydraulic Retention Time on the Removal of Pollutants From Sewage Treatment Plant Effluent on A Surface-flow Wetland System. Wetlands 25(2): 375-391.
25.Thackston, E.L., Shields, F.D. and Schroeder, P.R., (1987), Residence time distributions of shallow basins. Environment and Engineering 113: 1319-1332.
26.Vesilind P.A. and Morgan, S.M., (2004), Introduction to Environmental Engineering, 2nd Edition. Thomson Brooks Cole, USA.
27.Williams, M.D., Reimus, P.W., Vermeul, V.R., Rose, P.E., Dean, C.A., Waston, T.B., Newell, D.L., Leecaster, K.B. and Brauser, E.M., (2013), Development of Models to Simulate Tracer Tests for Characterization of Enhanced Geothermal Systems. U.S. Department of Energy. Pacific Northwest National Laboratory.
28.William J. Mitsch and James G. Gosselink, (1986), Wetlands.

29.行政院環保署水質淨化現地處理站,2007,人工濕地規劃設計操作管理參考手冊。
30.行政院農業委員會,2003,水土保持技術規範。
31.李總集,1999,咱ㄟ陂塘咱ㄟ寶,桃園農田水利會。
32.林永楨、趙珮伶,2005,規劃桃園人工湖供水以減緩乾旱缺水之模擬研究,學術天地。
33.林玲珠,2013,埤塘-另類生態水庫,共築方舟-氣候變遷調適入口網,http://www.tcap.ndc.gov.tw/climate-change-aspects/cca-taiwan-case/item/522-2013-10-03-11-47-59.html
34.周明顯、彭致豪,2005a,人工濕地汙水處理技術(上),經濟部水利署永續發展簡訊,第12 期,頁2-8。
35.韋煙灶,2010,桃園臺地埤塘水質研究,國立臺灣師範大學地理學系第八屆地理教學碩士論文。
36.張文賢、柯淳涵、張睿昇、林幸助,2005,建立人工濕地設置與操作作業程序及技術之研究,行政院公共工程委員會委託研究,愛魚生態工程有限公司。
37.張文亮,2007,人工溼地參考手冊,行政院環境保護署。
38.陳學聖,2007,桃園縣陂塘觀光導覽手冊-陂塘風采,桃園縣政府文化局。
39.許秦蓁,1997,桃園陂塘:興盛與垂危,桃園縣立文化中心。
40.郭品含,2008,水質處理型滯洪溼地之最佳化設計研究,國立臺灣大學土木工程研究所碩士論文。
41.謝勝彥,2004,提升桃園水利會灌區埤塘供水潛能之探討,桃園大圳水資源暨營運管理學術研討會論文集。
42.蘇宗敏,2007,表面流人工溼地水力效率之研究,國立臺灣大學土木工程研究所碩士論文。


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top