跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.134) 您好!臺灣時間:2025/11/14 17:02
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:江宜蒨
研究生(外文):Yi Chien Chiang
論文名稱:血鏈球菌SK36第四型纖毛基因群之分析
論文名稱(外文):Characterization of the Type IV pili gene cluster Streptococcus sanguinis SK36
指導教授:陳怡原
指導教授(外文):Y. Y. M. Chen
學位類別:碩士
校院名稱:長庚大學
系所名稱:生物醫學研究所
學門:生命科學學門
學類:生物化學學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
論文頁數:72
中文關鍵詞:第四型纖毛血鏈球菌
外文關鍵詞:Type IV piliStreptococcus sanguinistwitching motility
相關次數:
  • 被引用被引用:0
  • 點閱點閱:1121
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
血鏈球菌 (Streptococcus sanguinis) 是最初沾附在牙齒形成牙菌斑生物膜及可入侵血液進而引發伺機性亞急性心內膜炎的菌種之一。血鏈球菌的染色體含一第四型纖毛 (Type IV pili)基因群,其功能至今不詳。本研究目標在分析此基因群的表現與功能。第四型纖毛基因群共有16個基因,其中包括基因轉譯兩個ATPase (pilB 與 pilT)、細胞膜上的蛋白 (pilC)、3 個結構蛋白 (pilA)、一氧化氮還原酵素 (norD)、5 個未知功能的蛋白(gene 2312、2310與 2305-2303)、組裝相關蛋白 (pilMOP) 與將結構蛋白切割的分解酵素 (pilD)。反轉錄-連鎖聚合酶反應分析結果顯示pilD及下游lytB (轉譯乙醯胺基葡糖甘酶)在轉錄中是相連的,代表lytB也屬第四型纖毛基因群。由快速擴增cDNA法分析結果得知pilB ATG上游有三個轉錄起始位置,分別位於在pilB ATG上游的153 (P1)、536 (P2) 與837 (P3) 鹼基,P2與P3是σ70啟動子 (5’-TTGACA-N17-TATACT),而P1只具extended -10。利用電子顯微鏡觀察野生株時可在細菌表面發現由PilA構成之纖毛狀結構,而具ATPase與結構蛋白等七個基因缺失的突變株則無此結構。此外第四型纖毛缺失的突變株,其形成生物膜的能力較野生株低,但此突變不影響血鏈球菌與Hela細胞黏附的能力和細菌運動性 (twitching motility)。綜合以上得知,第四型纖毛基因群可合生位於菌表的纖毛,且此纖毛與生物膜的形成有關。此基因群的表現是由三個啟動子共同完成,而其中兩個啟動子具長段的非轉譯區域,暗示出可此基因群的表現是由一複雜機制所調控。
Streptococcus sanguinis is a primary colonizer of human tooth and an opportunistic pathogen for subacute endocarditis. A Type IV pili (Tfp) gene cluster was reported in the complete genome of Streptococcus sanguinis SK36 recently. The goal of this research aimed to analyze the expression and function of this gene cluster. The Tfp gene cluster is composed of total 16 genes, from pilB to pilD. A contiguous transcript was detected between pilD and the downstream lytB by RT-PCR, suggesting that lytB is also part of the operon. Three transcription initiation sites, 153- (P1), 536- (P2) and 837-base (P3) 5’ to the translation start site of pilB, respectively, were detected by rapid amplification of cDNA ends (5’ RACE) analysis. Both the P2 and P3 mapped to a σ70-like promoters (5’-TTGACA-N17-TATACT), whereas only an extended -10 sequence was observed with the P1. An anti-PilA antibody was generated and used to examine the structure of the pil cluster encoded products by transmission electron microscopy (TEM). A short hair-like structure was observed in the wild-type SK36 but not the Pil-deficient mutant strain, indicating that pil cluster is responsible for the synthesis of this structure. Furthermore, the pil-deficient mutant strains exhibited reduced biofilm formation. However, neither the adherence to Hela cells nor the twitching motility was affected by the deletion in pil cluster. Taken together, these results suggest that the pil cluster is responsible for the synthesis of a surface structure, and this structure is associated with biofilm formation. The multiple transcription initiation sties with long 5’ untranslated regions suggested the presence of a complex regulation system for the expression of the pil cluster.
TABLE OF CONTENENTS
指導教授推薦書
口試委員會審定書
授權書 ....................................................................................................................iii
誌謝 .................................................................................................................... iv
中文摘要................................................................................................................... v
ABSTRACT............................................................................................................. vi
TABLE OF CONTENENTS.................................................................................... vii
LIST OF TABLES .................................................................................................. viii
LIST OF FIGURES .................................................................................................. ix
INTRODUCTION..................................................................................................... 1
I Viridans streptococci …………….………………………………………1
II Streptococcus sanguinis …………….……………………………………1
III Bacterial motility ……………….…………………………………………2
IV The function of Tfp and Tfp biogenesis.……………………………………5
V Regulation of Tfp and twitching motility…………….…………………… 8
VI Motive…………….……………………………………….……….………9
MATERIALS AND METHODS.............................................................................. 11
RESULTS................................................................................................................ 19
DISCUSSION ......................................................................................................... 27
REFERENCES........................................................................................................ 33
Tables ................................................................................................................... 39
Figures ................................................................................................................... 51
LIST OF TABLES
Table 1. Bacteria strains and plasmid used in this study ........................................... 39
Table 2. Primers used in this study........................................................................... 40
Table 3. Properties and BlastP search results in S. sanguinis SK36 pil locus............. 45
Table 4. BlastP atlas comparing S. sanguinis to P. aeruginosa PAO1 and C.
perfringens SM101..................................................................................... 47
LIST OF FIGURES
Fig. 1. P. aeruginosa PAO1, C. perfringens SM101 and S. sanguinis SK36 genes
involved in Tfp and the confirmation of the S. sanguinis SK36 operonic
organization................................................................................................ 51
Fig. 2. Promoter mapping of the pil cluster by RACE analysis. ................................ 53
Fig. 3. Construction of the S. sanguinis SK36 pil-deficient mutants. ........................ 55
Fig. 4. Growth curves of the wild-type SK36 and mutant strains. ............................. 57
Fig. 5. Production of the recombinant SSA_2315 protein and antisera. .................... 58
Fig. 6. Piliation of wild-type and YC13 mutant strain analyzed by TEM. ................. 59
Fig. 7. The twitching motility of wild-type S. sanguinis and mutant strains. ............. 60
Fig. 8. The biofilm formation of wild-type S. sanguinis and mutant strains. ............. 61
Fig. 9. The adherence of wild-type S. sanguinis and YC13 to Hela cells. ................. 62
REFERENCES
Alm, R.A., Hallinan, J.P., Watson, A.A., and Mattick, J.S. (1996) Fimbrial biogenesis genes of Pseudomonas aeruginosa: pilW and pilX increase the similarity of type 4 fimbriae to the GSP protein-secretion systems and pilY1 encodes a gonococcal PilC homologue. Mol Microbiol 22: 161-173.
Beatson, S.A., Whitchurch, C.B., Sargent, J.L., Levesque, R.C., and Mattick, J.S. (2002) Differential regulation of twitching motility and elastase production by Vfr in Pseudomonas aeruginosa. J Bacteriol 184: 3605-3613.
Biais, N., Ladoux, B., Higashi, D., So, M., and Sheetz, M. (2008) Cooperative retraction of bundled type IV pili enables nanonewton force generation. PLoS Biol 6: e87.
Blehert, D.S., Palmer, R.J., Jr., Xavier, J.B., Almeida, J.S., and Kolenbrander, P.E. (2003) Autoinducer 2 production by Streptococcus gordonii DL1 and the biofilm phenotype of a luxS mutant are influenced by nutritional conditions. J Bacteriol 185: 4851-4860.
Bradley, D.E. (1980) A function of Pseudomonas aeruginosa PAO polar pili: twitching motility. Can J Microbiol 26: 146-154.
Carbonnelle, E., Helaine, S., Nassif, X., and Pelicic, V. (2006) A systematic genetic analysis in Neisseria meningitidis defines the Pil proteins required for assembly, functionality, stabilization and export of type IV pili. Mol Microbiol 61: 1510-1522.
Chen, Y.Y., Weaver, C.A., Mendelsohn, D.R., and Burne, R.A. (1998) Transcriptional regulation of the Streptococcus salivarius 57.I urease operon. J Bacteriol 180: 5769-5775.
Cisneros, L.H., Kessler, J.O., Ortiz, R., Cortez, R., and Bees, M.A. (2008) Unexpected bipolar flagellar arrangements and long-range flows driven by bacteria near solid boundaries. Phys Rev Lett 101: 168102.
Coykendall, A.L. (1989) Classification and identification of the viridans streptococci. Clin Microbiol Rev 2: 315-328.
Darzins, A. (1994) Characterization of a Pseudomonas aeruginosa gene cluster involved in pilus biosynthesis and twitching motility: sequence similarity to the chemotaxis proteins of enterics and the gliding bacterium Myxococcus xanthus. Mol Microbiol 11: 137-153.
De Las Rivas, B., Garcia, J.L., Lopez, R., and Garcia, P. (2002) Purification and polar localization of pneumococcal LytB, a putative endo-beta-N-acetylglucosaminidase: the chain-dispersing murein hydrolase. J Bacteriol 184: 4988-5000.
Facklam, R. (2002) What happened to the streptococci: overview of taxonomic and nomenclature changes. Clin Microbiol Rev 15: 613-630.
Fyfe, J.A., Carrick, C.S., and Davies, J.K. (1995) The pilE gene of Neisseria gonorrhoeae MS11 is transcribed from a sigma 70 promoter during growth in vitro. J Bacteriol 177: 3781-3787.
Gibbons, R.J., and Houte, J.V. (1975) Bacterial adherence in oral microbial ecology. Annu Rev Microbiol 29: 19-44.
Henderson, I.R., Owen, P., and Nataro, J.P. (1999) Molecular switches--the ON and OFF of bacterial phase variation. Mol Microbiol 33: 919-932.
Herzberg, M.C., MacFarlane, G.D., Gong, K., Armstrong, N.N., Witt, A.R., Erickson, P.R., and Meyer, M.W. (1992) The platelet interactivity phenotype of Streptococcus sanguis influences the course of experimental endocarditis. Infect Immun 60: 4809-4818.
Hobbs, M., Collie, E.S., Free, P.D., Livingston, S.P., and Mattick, J.S. (1993) PilS and PilR, a two-component transcriptional regulatory system controlling expression of type 4 fimbriae in Pseudomonas aeruginosa. Mol Microbiol 7: 669-682.
Jarrell, K.F., and McBride, M.J. (2008) The surprisingly diverse ways that prokaryotes move. Nat Rev Microbiol 6: 466-476.
Jennings, M.P., Virji, M., Evans, D., Foster, V., Srikhanta, Y.N., Steeghs, L., van der Ley, P., and Moxon, E.R. (1998) Identification of a novel gene involved in pilin glycosylation in Neisseria meningitidis. Mol Microbiol 29: 975-984.
Kirchner, M., Heuer, D., and Meyer, T.F. (2005) CD46-independent binding of neisserial type IV pili and the major pilus adhesin, PilC, to human epithelial cells. Infect Immun 73: 3072-3082.
Klausen, M., Heydorn, A., Ragas, P., Lambertsen, L., Aaes-Jorgensen, A., Molin, S., and Tolker-Nielsen, T. (2003) Biofilm formation by Pseudomonas aeruginosa wild type, flagella and type IV pili mutants. Mol Microbiol 48: 1511-1524.
Koomey, M., Bergstrom, S., Blake, M., and Swanson, J. (1991) Pilin expression and processing in pilus mutants of Neisseria gonorrhoeae: critical role of Gly-1 in assembly. Mol Microbiol 5: 279-287.
Lau, P.C., Sung, C.K., Lee, J.H., Morrison, D.A., and Cvitkovitch, D.G. (2002) PCR ligation mutagenesis in transformable streptococci: application and efficiency. J Microbiol Methods 49: 193-205.
Lautrop, H. (1962) Bacterium anitratum transferred to the genus Cytophaga. Acta Pathol Microbiol Scand Suppl Suppl 154: 303-304.
Li, Y., Sun, H., Ma, X., Lu, A., Lux, R., Zusman, D., and Shi, W. (2003) Extracellular polysaccharides mediate pilus retraction during social motility of Myxococcus xanthus. Proc Natl Acad Sci U S A 100: 5443-5448.
Li, Y., Hao, G., Galvani, C.D., Meng, Y., De La Fuente, L., Hoch, H.C., and Burr, T.J. (2007) Type I and type IV pili of Xylella fastidiosa affect twitching motility, biofilm formation and cell-cell aggregation. Microbiology 153: 719-726.
Loo, C.Y., Corliss, D.A., and Ganeshkumar, N. (2000) Streptococcus gordonii biofilm formation: identification of genes that code for biofilm phenotypes. J Bacteriol 182: 1374-1382.
Lory, S., and Strom, M.S. (1997) Structure-function relationship of type-IV prepilin peptidase of Pseudomonas aeruginosa--a review. Gene 192: 117-121.
Macdonald, D.L., Pasloske, B.L., and Paranchych, W. (1993) Mutations in the fifth-position glutamate in Pseudomonas aeruginosa pilin affect the transmethylation of the N-terminal phenylalanine. Can J Microbiol 39: 500-505.
Mattick, J.S. (2002) Type IV pili and twitching motility. Annu Rev Microbiol 56: 289-314.
Mauriello, E.M., Mouhamar, F., Nan, B., Ducret, A., Dai, D., Zusman, D.R., and Mignot, T. Bacterial motility complexes require the actin-like protein, MreB and the Ras homologue, MglA. Embo J 29: 315-326.
McBride, M.J. (2001) Bacterial gliding motility: multiple mechanisms for cell movement over surfaces. Annu Rev Microbiol 55: 49-75.
McCarren, J., Heuser, J., Roth, R., Yamada, N., Martone, M., and Brahamsha, B. (2005) Inactivation of swmA results in the loss of an outer cell layer in a swimming synechococcus strain. J Bacteriol 187: 224-230.
McCarter, L.L. (2004) Dual flagellar systems enable motility under different circumstances. J Mol Microbiol Biotechnol 7: 18-29.
Mendez, M., Huang, I.H., Ohtani, K., Grau, R., Shimizu, T., and Sarker, M.R. (2008) Carbon catabolite repression of type IV pilus-dependent gliding motility in the anaerobic pathogen Clostridium perfringens. J Bacteriol 190: 48-60.
Miwa, Y., Nakata, A., Ogiwara, A., Yamamoto, M., and Fujita, Y. (2000) Evaluation and characterization of catabolite-responsive elements (cre) of Bacillus subtilis. Nucleic Acids Res 28: 1206-1210.
Moreillon, P., and Que, Y.A. (2004) Infective endocarditis. Lancet 363: 139-149.
Murray, T.S., and Kazmierczak, B.I. (2008) Pseudomonas aeruginosa exhibits sliding motility in the absence of type IV pili and flagella. J Bacteriol 190: 2700-2708.
Nunn, D., Bergman, S., and Lory, S. (1990) Products of three accessory genes, pilB, pilC, and pilD, are required for biogenesis of Pseudomonas aeruginosa pili. J Bacteriol 172: 2911-2919.
O'Toole, G.A., and Kolter, R. (1998a) Flagellar and twitching motility are necessary for Pseudomonas aeruginosa biofilm development. Mol Microbiol 30: 295-304.
O'Toole, G.A., and Kolter, R. (1998b) Initiation of biofilm formation in Pseudomonas fluorescens WCS365 proceeds via multiple, convergent signalling pathways: a genetic analysis. Mol Microbiol 28: 449-461.
Okahashi, N., Nakata, M., Sakurai, A., Terao, Y., Hoshino, T., Yamaguchi, M., Isoda, R., Sumitomo, T., Nakano, K., Kawabata, S., and Ooshima, T. Pili of oral Streptococcus sanguinis bind to fibronectin and contribute to cell adhesion. Biochem Biophys Res Commun 391: 1192-1196.
Paik, S., Senty, L., Das, S., Noe, J.C., Munro, C.L., and Kitten, T. (2005) Identification of virulence determinants for endocarditis in Streptococcus sanguinis by signature-tagged mutagenesis. Infect Immun 73: 6064-6074.
Pegden, R.S., Larson, M.A., Grant, R.J., and Morrison, M. (1998) Adherence of the gram-positive bacterium Ruminococcus albus to cellulose and identification of a novel form of cellulose-binding protein which belongs to the Pil family of proteins. J Bacteriol 180: 5921-5927.
Pelicic, V. (2008) Type IV pili: e pluribus unum? Mol Microbiol 68: 827-837.
Rakotoarivonina, H., Jubelin, G., Hebraud, M., Gaillard-Martinie, B., Forano, E., and Mosoni, P. (2002) Adhesion to cellulose of the Gram-positive bacterium Ruminococcus albus involves type IV pili. Microbiology 148: 1871-1880.
Rakotoarivonina, H., Larson, M.A., Morrison, M., Girardeau, J.P., Gaillard-Martinie, B., Forano, E., and Mosoni, P. (2005) The Ruminococcus albus pilA1-pilA2 locus: expression and putative role of two adjacent pil genes in pilus formation and bacterial adhesion to cellulose. Microbiology 151: 1291-1299.
Ruiz, T., Lenox, C., Radermacher, M., and Mintz, K.P. (2006) Novel surface structures are associated with the adhesion of Actinobacillus actinomycetemcomitans to collagen. Infect Immun 74: 6163-6170.
Semmler, A.B., Whitchurch, C.B., and Mattick, J.S. (1999) A re-examination of twitching motility in Pseudomonas aeruginosa. Microbiology 145 ( Pt 10): 2863-2873.
Shi, W., Ngok, F.K., and Zusman, D.R. (1996) Cell density regulates cellular reversal frequency in Myxococcus xanthus. Proc Natl Acad Sci U S A 93: 4142-4146.
Skerker, J.M., and Berg, H.C. (2001) Direct observation of extension and retraction of type IV pili. Proc Natl Acad Sci U S A 98: 6901-6904.
Strom, M.S., and Lory, S. (1993) Structure-function and biogenesis of the type IV pili. Annu Rev Microbiol 47: 565-596.
Suh, S.J., Runyen-Janecky, L.J., Maleniak, T.C., Hager, P., MacGregor, C.H., Zielinski-Mozny, N.A., Phibbs, P.V., Jr., and West, S.E. (2002) Effect of vfr mutation on global gene expression and catabolite repression control of Pseudomonas aeruginosa. Microbiology 148: 1561-1569.
Towbin, H., Staehelin, T., and Gordon, J. (1979) Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A 76: 4350-4354.
Varga, J.J., Nguyen, V., O'Brien, D.K., Rodgers, K., Walker, R.A., and Melville, S.B. (2006) Type IV pili-dependent gliding motility in the Gram-positive pathogen Clostridium perfringens and other Clostridia. Mol Microbiol 62: 680-694.
Varga, J.J., Therit, B., and Melville, S.B. (2008) Type IV pili and the CcpA protein are needed for maximal biofilm formation by the gram-positive anaerobic pathogen Clostridium perfringens. Infect Immun 76: 4944-4951.
Ward, M.J., and Zusman, D.R. (1997) Regulation of directed motility in Myxococcus xanthus. Mol Microbiol 24: 885-893.
Watson, A.A., Alm, R.A., and Mattick, J.S. (1996) Identification of a gene, pilF, required for type 4 fimbrial biogenesis and twitching motility in Pseudomonas aeruginosa. Gene 180: 49-56.
Whitchurch, C.B., Alm, R.A., and Mattick, J.S. (1996) The alginate regulator AlgR and an associated sensor FimS are required for twitching motility in Pseudomonas aeruginosa. Proc Natl Acad Sci U S A 93: 9839-9843.
Wolfgang, M., Park, H.S., Hayes, S.F., van Putten, J.P., and Koomey, M. (1998) Suppression of an absolute defect in type IV pilus biogenesis by loss-of-function mutations in pilT, a twitching motility gene in Neisseria gonorrhoeae. Proc Natl Acad Sci U S A 95: 14973-14978.
Wolfgang, M., van Putten, J.P., Hayes, S.F., Dorward, D., and Koomey, M. (2000) Components and dynamics of fiber formation define a ubiquitous biogenesis pathway for bacterial pili. Embo J 19: 6408-6418.
Wolgemuth, C.W., Charon, N.W., Goldstein, S.F., and Goldstein, R.E. (2006) The flagellar cytoskeleton of the spirochetes. J Mol Microbiol Biotechnol 11: 221-227.
Xu, P., Alves, J.M., Kitten, T., Brown, A., Chen, Z., Ozaki, L.S., Manque, P., Ge, X., Serrano, M.G., Puiu, D., Hendricks, S., Wang, Y., Chaplin, M.D., Akan, D., Paik, S., Peterson, D.L., Macrina, F.L., and Buck, G.A. (2007) Genome of the opportunistic pathogen Streptococcus sanguinis. J Bacteriol 189: 3166-3175.
Yu, C., Ruiz, T., Lenox, C., and Mintz, K.P. (2008) Functional mapping of an oligomeric autotransporter adhesin of Aggregatibacter actinomycetemcomitans. J Bacteriol 190: 3098-3109.
Zusman, D.R., Scott, A.E., Yang, Z., and Kirby, J.R. (2007) Chemosensory pathways, motility and development in Myxococcus xanthus. Nat Rev Microbiol 5: 862-872.


連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top