跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.176) 您好!臺灣時間:2025/09/07 22:55
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:翁政佑
研究生(外文):Cheng-yu Weng
論文名稱:高速鐵路車輛-橋梁-風耦合系統之動力反應
論文名稱(外文):Dynamic Response of High Speed Railway Vehicle-Bridge-Wind Coupled System
指導教授:陳振華陳振華引用關係
指導教授(外文):Chern-hwa Chen
學位類別:碩士
校院名稱:國立高雄大學
系所名稱:土木與環境工程學系碩士班
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:90
中文關鍵詞:高速鐵路車橋互制風-車-橋耦合系統動力反應
外文關鍵詞:high speed railwayvehicle-bridge interactionwind-vehicle-bridge coupled systemdynamic response
相關次數:
  • 被引用被引用:2
  • 點閱點閱:343
  • 評分評分:
  • 下載下載:52
  • 收藏至我的研究室書目清單書目收藏:0
本文目的為建立車輛-橋梁-風耦合系統分析程序與模型並進行動力分析。車輛-橋梁-風耦合系統振動行為為時變問題,本文將車輛視為序列式懸吊質量系統,並使用有限元素法為基礎理論的分析軟體進行模型建置與分析,本文首先說明有限元素法梁元素理論與應用,並將車輛模型簡化為懸吊質量系統,再對輪軌接觸行為模擬與建置,建立車輛-橋梁耦合系統並以VBI元素作為比較。在耦合系統的建立後對(1) 橋梁跨距與(2) 車輛速度;以及(3) 車輛形式三部分進行動力分析求得橋梁與車輛反應,其中車輛形式分為單一車輛、序列式車輛以及連續序列式車輛三種形式。在固定橋梁跨距分析中獲得橋梁反應與車輛速度呈正相關結果;在單一車輛與序列式車輛兩種車輛形式中進行車速與車輛反應比較,結果顯示車速與車輪反應呈負相關而車速與車輪加速度成正相關;另外也獲得橋梁反應與跨距呈正相關之結果,與材料力學基本理論相符合。而序列式車輛以不同車速進行分析,從橋梁反應發現相消現象,而在車輪加速度反應上發現放大效應。由以上結果得知本文所提出的車輛-橋梁耦合系統能成功分析橋梁與車輛動力反應,完成車輛-橋梁-風力耦合系統建制。
The purpose of this article is to establish an analysis producer of vehicle-bridge-wind coupled system, and modeling. After finish the model establishing, dynamic analysis is accomplished. The vehicle system is considered to sprung mass system in this article. The finite element method analysis software is used to establish the model and analyzed it. Beam element theorem and application in finite element method is described first in article. The method of simplifying the vehicle to sprung mass system is talked about second. The third part is to establish and model the behavior of contact between track and wheel. Finally the vehicle and bridge coupled system is established to compare to the results used by vehicle-bridge interaction(VBI) element method at past paper. After the coupled system is accomplished , (1)the bridge span length, (2)vehicle speed, and (3)the modes of vehicle are focus to make dynamic analysis and calculate the responses of bridge and vehicle. The modes of vehicle are included to single vehicle, serial vehicle, and continuous serial vehicle. The bridge response and vehicle speed are positive relationship under constant bridge span length. Within single and serial vehicle analysis compared, the vehicle speed and the response of wheels are negative relationship but vehicle speed and the acceleration of wheels are positive relationship. The response and span of a bridge are positive relationship to match the basic sense of material force theorem. Using different speeds in serial vehicle analysis, the cancellation phenomenon is happened in the response of bridge, and the amplification phenomenon happened according to observing the acceleration of wheel. Among these results, vehicle and bridge coupled system is accomplished successfully and analyze the dynamic responses of vehicle and bridge.
第一章 緒論
1.1 研究動機
1.2 研究目的
1.3 研究方法與範圍
1.4 論文架構及流程圖
第二章 文獻回顧
2.1 車輛、軌道與橋梁耦合系統
2.2 風力與橋梁耦合系統
2.3 車輛-橋梁-風力耦合系統
第三章 車輛與橋梁耦合系統理論
3.1 車輛與橋梁耦合系統之假設
3.2 橋梁系統之模式化
3.3 車輛系統之模式化
3.4 輪軌接觸行為之模擬
第四章 車輛與橋梁系統動力分析
4.1 橋梁靜力分析
4.2 質量塊動力分析
4.3 車輛與橋梁耦合系統模式化
4.4 橋梁受單一車輛作用驗證與分析
4.5 橋梁受序列式車輛作用動力分析
4.6 橋梁受連續序列式車輛作用動力分析
第五章 風對車輛與橋梁耦合系統之影響
5.1 風速擾動之模擬
5.2 車輛-橋梁-風耦合系統動力分析
5.3 車速對車輛-橋梁-風耦合系統之影響
第六章 結論與建議
6.1 結論
6.2 建議
參考文獻
Baker, C. J., (1993) “The behavior of road vehicles in unsteady cross winds,” Journal of Wind Engineering and Industrial Aerodynamics, 49, 439-448.
Barcala, M. A., (2007) “An experimental study of the influence of parapets on the aerodynamic loads under cross wind on a two-dimensional model of a railway vehicle on a bridge,” Proceedings of the Institution of Mechanical Engineers -- Part F -- Journal of Rail & Rapid Transit, 221(4), 487-494.
Cai, C. S., and Chen, S. R., (2004) “Framework of vehicle–bridge–wind dynamic analysis,” Journal of Wind Engineering and Industrial Aerodynamics, 92, 579-607.
Charuvisit, S., Kimura, K., and Fujino, Y., (2004) “Effects of wind barrier on a vehicle passing in the wake of a bridge tower in cross wind and its response,” Journal of Wind Engineering and Industrial Aerodynamics, 92(7-8), 609-639.
Chiu, T. W., (1995) “Prediction of the aerodynamic loads on a railway train in a cross-wind at large yaw angles using an integrated two- and three-dimensional source/vortex panel method,” Journal of Wind Engineering and Industrial Aerodynamics, 57, 19-39.
Cooper, K. R., (1993) “Bluff-body aerodynamics as applied to vehicles,” Journal of Wind Engineering and Industrial Aerodynamics, 49, 1-22.
Davenport, A. G., (1961) “The application of statistical concepts to the wind loading of structures,” Proceedings, Institution of Civil Engineers, 19, 449-472.
Davenport, A. G., (1962) “Buffeting of a suspension bridge by storm winds,” Journal of the Structural Division, ASCE, 88(ST3), 233-268.
Davenport, A. G., (2002) “Past, present and future of wind engineering,” Journal of Wind Engineering and Industrial Aerodynamics, 90, 1371–1380.
Diuna, G., and Cheli F., (1989) “Dynamic interaction of railway systems with large bridges,” Vehicle System Dynamics, 18, 71–106.
Fryba, L., (1973) Vibrations of solids and structures under moving loads, Groningen, Noordhoff International Publishing.
Fujii, T., Maeda, T., Ishida, H., Imai, T., Tanemoto, K., and Suzuki, M., (1999) “Wind-induced accidents of train/vehicles and their measure in Japan,” QR RTRI 1, 50–55.
Green, M. F., and Cebon, D., (1994) “Dynamic response of highway bridges to heavy vehicles loads: theory and experimental validation,” Journal of Sound and Vibration, 170, 51-78.
Guo, X. R., and Zeng, Q. Y., (2001) “Analysis of critical wind speed for running trains on a schemed Yangtze River Bridge at Nanjing on Jing-Hu high speed railway line,” Journal of China Railway Society, 23, 75–80.
Krajnovic, S., and Davidson, L., (2005) “Influence of floor motions in wind tunnels on the aerodynamics of road vehicles,” Journal of Wind Engineering and Industrial Aerodynamics, 93(9), 677-696.
Lee , S. Y., and Cheng, Y. C., (2008), “A new dynamic model of high-speed railway vehicle moving on curved tracks,” Journal of Vibration and Acoustics, 130(1), 011009(10 pages).
Li, Y. L., Qiang, S. H., Liao, H. L., and Xu, Y. L., (2005) “Dynamics of wind–rail vehicle–bridge systems,” Journal of Wind Engineering and Industrial Aerodynamics, 93(6), 483-507.
Lin, Y. I., and Chen, C. H., (2003) “ Identification of flutter derivatives using neural network,” International Wind Engineering Symposium and Building Wind Code Workshop, Tamsui, Taiwan, 1-21.
Scanlan, R. H., (1990) “Bridge aeroelasticity - present state and future challenges,” Journal of Wind Engineering and Industrial Aerodynamics, 36, 63-74.
Scanlan, R. H., and Gade, R. H., (1977) “Motion of suspended bridge spans under gusty wind,” Journal of the Structural Division, ASCE, 103(ST9), 1867-1883.
Scanlan, R. H., and Tomko, J. J., (1971) “Airfoil and bridge deck flutter derivatives,” Journal of the Engineering Mechanics Division, ASCE, 97(EM6), 1717-1737.
Schmidlin, T. W., King, P. S., Hammer, B. O., and Ono, Y., (1998) “Behavior of Vehicles during Tornado Winds,” Journal of Safety Research, 29(3), 181-186.
Wang, T. L., Garg, V. K., and Chu, K. H., (1991) “Railway bridge/vehicle interaction studies with new vehicle model,” Journal of Structural Engineering, 117, 2099-2116.
Xu, Y. L. and Ding, Q. S., (2006) “Interaction of railway vehicles with track in cross-winds,” Journal of Fluids and Structures, 22, 295–314.
Xu, Y. L., and Guo, W. H., (2003) “Dynamic analysis of coupled road vehicle and cable-stayed bridge systems under turbulent wind,” Engineering Structures, 25(4), 473-486.
Xu, Y. L., Xia H., and Yan, Q. S., (2003) “Dynamic response of suspension bridge to high winds and running train,” Journal of Bridge Engineering, ASCE, 8(1), 46-55.
Xu, Y. L., Zhang, N., and Xia, H., (2004) “Vibration of coupled train and cable-stayed bridge systems in cross winds,” Engineering Structures, 26, 1389–1406.
Yang, Y. B., and Kuo, S. R.., (1994) “Theory and analysis of nonlinear framed structures,” Prentice Hall, Singapore.
Yang, Y. B., and Yau, J. D., (1997) “Vehicle-bridge interaction element for dynamic analysis,” Journal of Structural Engineering, November, 1512-1518.
Yang, Y. B., Yau, J. D., and Hsu, L. C., (1997) “Vibration of simple beans due to trains moving at high speeds,” Engineering Structures, 19(11), 936-944.
Yang, Y. B., Mac, S. W., and Chen, C. H., (2001) “Multi-Mode Coupled Buffeting Analysis of Cable-Stayed Bridge,” International Journal of Structural Stability and Dynamics, 1(3), 429-453.
Yang, Y. B., Yau, J. D., and Wu., Y. S., (2007) Vehicle-Bridge Interaction Dynamics-with applications to high-speed railways, World Scientific.
方志隆,(1994),「地震對鐵路單一車輛通過橋梁時走行安定性之分析」,中央大學土木系碩士論文,周健捷教授指導。
張東文,(1997),「鐵路橋之行車受震振動」,中興大學土木系碩士論文,郭其珍教授指導。
林志錚,(1998),「三維動力互制模擬與分析」,中央大學土木系碩士論文,丁承先教授指導。
林堉溢、鄭啟明、李鳳娟,(1998),「大跨度橋梁考慮振態模式耦合之顫振與亂流效應分析」,中國土木水利工程學刊,台北,台灣,第十卷,第一期,第45-57頁。
楊永斌、陳振華,(1998),「斜張橋之三維氣彈穩定分析」,中國土木水利工程學刊,台北,台灣,第十卷,第三期,第525-535頁。
黃勝翊,(1999),「橋梁於高速車輛下之振動效應」,台灣大學土木系碩士論文,楊永斌教授指導。
蕭豐稼,(1999),「車輛與道碴軌道之動力互制分析」,中央大學土木系碩士論文,丁承先教授指導。
吳演聲,(2000),「常時與地震作用下之車輛-鋼軌-橋梁動力互制行為」,台灣大學土木系博士論文,楊永斌教授指導。
姚忠達、楊永斌,(2000),高速鐵路車-橋互制理論,圖文技術服務有限公司。
詹天維,(2000),「高鐵橋梁與車輛風害分析及其對策」,台灣科技大學營建系碩士論文,陳瑞華教授指導。
王涵忠,(2001),「橋梁結構與高速車輛之動力互制三維模擬分析」,中央大學土木系碩士論文,丁承先教授指導。
吳煥文,(2001),「橋梁結構與高速車輛之動力互制-二維模擬分析」,中央大學土木系碩士論文,丁承先教授指導。
楊永斌、麥樹偉、陳振華,(2002),「纜索支撐橋梁之耦合抖振反應」,中國土木水利工程學刊,台北,台灣,第十四卷,第一期,第31-42頁。
蕭吉謹,(2002),「斜張橋於車輛作用下之動力反應分析」,台灣大學土木系博士論文,楊永斌教授指導。
鄭永長,(2003),「高速鐵路車輛轉向架之動態分析」,成功大學機械系博士論文,李森墉教授指導。
夏禾、張楠,(2005),車輛與結構動力相互作用,科學出版社。
雷曉燕、聖小珍,(2006),現代軌道理論研究,中國鐵道出版社。
黃仁政,(2007),「高速移動荷載下軌道系統動態響應」,成功大學土木系碩士論文,郭振銘教授指導。
廖元聖,(2007),「輪對運動對輪軌接觸蠕滑率/力之影響」,成功大學土木系碩士論文,郭振銘教授指導。
翟婉明,(2007),車輛-軌道偶合動力學,科學出版社。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top