跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.17) 您好!臺灣時間:2025/09/03 20:10
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:蔡名杰
研究生(外文):Min-Jay Tsai
論文名稱:利用埃氏有限迴圈軌跡理論鑑別二階時延模式
論文名稱(外文):Use of the A-Locus Limit-Cycle Theory to Identify Second-Order plus Delay Models
指導教授:黃世宏
指導教授(外文):Shyh-Hong Hwang
學位類別:碩士
校院名稱:國立成功大學
系所名稱:化學工程學系碩博士班
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2003
畢業學年度:91
語文別:中文
論文頁數:84
中文關鍵詞:替續器埃氏有限迴圈軌跡理論
外文關鍵詞:relayA-Locus Limit-Cycle Theory
相關次數:
  • 被引用被引用:0
  • 點閱點閱:145
  • 評分評分:
  • 下載下載:7
  • 收藏至我的研究室書目清單書目收藏:0
利用替續器產生之有限迴圈現象來取得程序動態訊息的鑑別技術已經在工業界獲得廣泛的應用。Kaya和Atherton (2001)利用埃氏有限迴圈軌跡理論提出二階時延模式(不含零點)的鑑別方法,此法具有實際應用的困難,因為輸出量測的微小偏差即可造成錯誤的鑑別結果。
本論文沿用埃氏有限迴圈軌跡理論來發展兩種較Kaya法更適合實際應用的鑑別方法。第一種方法以頻率加權的方式將軌跡理論產生之輸出方程式作積分處理,可處理鑑別實驗時靜態負載擾動存在的問題。第二種方法則利用輸出方程式進行多區域之面積積分並與量測結果作比較。除了二階不含零點模式之應用,此兩種方法亦被擴展至二階含零點模式之鑑別。經模擬研究與實驗印證,本文所提之兩種鑑別方法均較Kaya法更具有實用的價值。
Identification techniques based on relay-induced limit cycles have found wide applications in the industry to acquire information about process dynamics. Kaya and Atherton (2001) proposed the use of the A-locus limit-cycle theory to identify second-order plus delay models (without zeros). However, their method is not feasible because slight variations in the output measurement could cause erroneous identification results.
This thesis presents two identification methods based on the A-locus limit-cycle theory, which are superior to Kaya’s method in applications. The first method integrates the output equation obtained by the A-locus theory in a frequency-weighted manner, which can deal with the problem of static load disturbances. The second method utilizes the output equation to generate multiple area integrals, which are compared with the measured results. In addition to the application of second-order without zero models, the two methods are extended to identification of second-order with zero models. Extensive simulation study and an experimental work demonstrate that the proposed methods are indeed much more feasible than Kaya’s method.
中文摘要i
英文摘要ii
誌謝iii
表目錄iv
圖目錄vii
第一章 緒論1
1.1 研究動機1
1.2 文獻回顧2
1.3 章節組織8
第二章 現有之鑑別方法與缺點分析10
2.1 Kaya方法的簡介10
2.2 Kaya方法的模擬研究13
2.2.1 模式應答曲線之建立13
2.2.2 一、二階範例之鑑別結果22
2.3 面積積分法與點對應法之應用31
第三章 以埃氏理論為基之新鑑別法36
3.1 鑑別法A之原理37
3.1.1 無負載擾動之程序鑑別37
3.1.2 存在負載擾動之程序鑑別39
3.2 鑑別法B之原理42
3.3 二階含零點時延程序之鑑別43
第四章 模擬研究與討論45
4.1 鑑別法A與Kaya方法之結果比較45
4.2 鑑別法A、B之結果比較48
4.3 外加雜訊存在時之鑑別結果51
4.4 二階含零點時延模式之鑑別結果60
4.5 存在靜態負載擾動之程序參數鑑別69
4.6 模式簡化之應用72
4.7 實例應用79
第五章 結論與未來展望82
5.1 結論82
5.2 未來展望84
參考文獻I
附錄A、埃氏有限迴圈軌跡理論(A-Loucs Theory)公式之推導III
附錄B、公式表(節錄於文獻)VI
附錄C、Kaya之公式推導VIII
附錄D、鑑別法A公式之推導XVIII
[1]Atherton, D. P.; Stability of Nonlinear Systems, Research Student Press, (1981)
[2]Åström, K. J. and T. Hägglund;“Automatic tuning of simple regulators with specifications on phase and amplitude margins,”Automatica, 20, 645 (1984)
[3]Åström, K. J. and T. Hägglund; Automatic Tuning of PID Controllers, Instrument Society of America, Research Triangle Park, NC (1988)
[4]Bi, Q. Q. Wang and C. C. Hang;“Relay-Based Estimation of Multiple Points on Process Frequency Response,”Automatica, 33, 1753 (1997)
[5]Chang, R. C., S. H. Shen, and C. C. Yu;“Derivation of transfer functions from relay feedback systems,”Ind. Eng. Chem. Res., 31, 855 (1992)
[6]Chung, J. K-C. and D. P. Atherton;“The determination of periodic modes in relay systems using the state space approach,”Int. J. Control 4, 105 (1966)
[7]Friman, M. and K. V. Waller;“A Two-Channel Relay for Autotuning,”Ind. Eng. Chem. Res., 36, 2662 (1997)
[8]Ham, T. W. and Y. H. Kim;“Process Identification Using Pulse Response and Proportional-Integral Derivative Controller Tuning with Combined Guidelines,”Ind. Eng. Chem. Res., 37, 482 (1998)
[9]Hang, C. C. and K. J. Åström;“Practical Aspects of PID Auto-tuners Based on Relay Feedback,”Proc. Of IFAC Int. Symposium on Adaptive Control of Chemical Processes, pp. 153, Copenhagen, Denmark (1988)
[10]Hang, C. C., K. J. Åström, and W. K. Ho;“Relay Auto-Tuning in the Presence of Static Load Disturbance,”Automatica, 29, 563 (1993)
[11]Huang, H. P., C. L. Chen, G. B. Wang, and C. W. Lai;“Estimation
of SOPDT Transfer Function Models Using an Auto-Tuning Test,”
J. Chin. Inst. Chem. Engrs., 27, 153 (1996)
[12]Huang, H. P. and C. L. Chen;“A New Approach to Identify Low Order Model for Process Having Single Unstable pole,”SAMS, 29,
163 (1997a)
[13]Huang, H. P. and C. L. Chen;“Auto-Tuning of PID Controllers for Second Order Unstable Process Having Dead Time,”J. Chem. Eng. Japan, 32, 486 (1999)
[14]Hwang, S. H.;“Closed-Loop Automatic Tuning of Single-Input/
Single-Output Systems,”Ind. Eng. Chem. Res., 34, 2406 (1995)
[15]Kaya, I. and D. P. Atherton;“Parameter Estimation from Relay Autotuning with Asymmetric Limit Cycle Data,”J. Process Control, 11, 429 (2001)
[16]Li, W., E. Eskinat, and W. L. Luyben;“An Improved Autotune Identification Method,”Ind. Eng. Chem. Res, 30, 1530 (1991)
[17]Luyben, W. L.;“Derivation of transfer functions for highly nonlinear distillation columns,”Ind. Eng. Chem. Res, 26, 2490(1987)
[18]Majhi, S. and D. P. Atherton;“Autotuning and Controller Design for Processes with Small Time Delays,”IEE Proc. Control Theory Appl., 146, 415 (1999)
[19]Park, J. H., S. W. Sung, and I. B. Lee;“Improved Relay Auto-Tuning with Static Load Disturbance,”Automatica, 33, 711 (1997)
[20]Scali, C., G. Marchetti, and D. Semino;“Relay with additional delay for identification and autotuning of completely unknown processes,”Ind. Eng. Chem. Res., 38, 1987 (1999)
[21]Semino, D.;“Automatic Tuning of PID Controllers for Unstable Processes,”IFAC Advanced Control of Chemical Processes, pp. 321, Kyoto, Japan (1994)
[22]Shen, S. H., J. S. Wu, and C. C. Yu;“Use of Biased-Relay Feedback for System Identification,”AICHE J., 42, 1174 (1996a)
[23]Shen, S. H., J. S. Wu, and C. C. Yu;“Autotune Identification under Load Disturbance,”Ind. Eng. Chem. Res., 35, 1642 (1996b)
[24]Shiu, S. J. and S. H. Hwang;“System identification using open-loop or closed-loop relay feedback,”Symposium on Computer Process Control, pp. 96, Taipi, ROC (1995)
[25]Shiu, S. J., S. H. Hwang, and M. L. Lin;“Automatic Tuning of Systems with One or Two Unstable Poles,”Chem. Eng. Comm., 167, 51 (1998)
[26]Wang, Q. G., C. C. Hang, and B. Zou;“Low order modeling from relay feedback systems,”Ind. Eng. Chem. Res., 36, 375 (1997)
[27]Wang, Q. G., T. H. Lee, and K. K. Tan;“Relay-Tuned FSA Control for Unstable Processes with Deadtime,”Proceedings of ACC, pp. 311, Seattle, USA (1995)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top