參考文獻
1. 王嘉穎,「我國上市公司財務危機與監理因素之關聯性研究-實質所有權之探討」,國立台灣大學會計研究所未出版碩士論文,2000。2. 邱德水,「知識產業的智慧型資本衡量之探討-以IC設計公司為案例」,國立交通大學科技管理研究所未出版碩士論文,2001。3. 林文修,「演化式類神經網路為基底的企業危機診斷模型︰智慧資本之應用」,國立中央大學資訊管理研究所未出版博士論文,2000。4. 林良陽,「衡量研發機構智慧資本之研究-以工研院光電所為例」,國立台灣大學企業管理研究所未出版碩士論文,2002。5. 易美蓮,「如何掌握危機企業的先期警訊」,產業金融季刊,1996年6月,第91期,50-58頁。6. 施淑萍,「財務危機預警模式與財務危機企業財務特性之研究」,東吳大學會計研究所未出版碩士論文,2000。7. 施能仁與方南芳,「以類神經網路建立台灣儲蓄互助社財務危機預警模式」,台灣經濟,1997,247期,34-80頁。
8. 許峻源,「類神經網路與MARS於資料探勘分類模式之應用」,輔仁大學應用統計研究所未出版碩士論文,2001。9. 陳美純,「資訊科技投資與智慧資本對企業績效影響之研究」,國立中央大學資訊管理研究所未出版博士論文,2001。10. 陳明賢,「財務危機預測之計量分析研究」,國立台灣大學商學研究所未出版碩士論文,1986。11. 陳俊呈,「倒傳遞網路在財務危機預警模式的預測能力之探討」,國立海洋大學航運管理研究所未出版碩士論文,1999。12. 陳肇榮,「運用財務比率預測企業財務危機之實證研究」,國立政治大學企業管理研究所未出版博士論文,1983。13. 陳靜怡,「財務危機公司資本結構決定因素,資本結構與自發性重整行為聯立結構關係模式之研究」,義守大學管理科學研究所未出版碩士論文,2000。14. 陳蘊如,「財務危機預警制度之研究」,國立政治大學會計研究所未出版碩士論文,1991。15. 張正忠,「台灣上市公司財務危機預警模式之建立-瀑布羅吉斯模型之應用」,國立交通大學經營管理研究所未出版碩士論文,2000。16. 游啟聰,「知識經濟時代的會計趨勢」,今日會計,76卷,民88.9,16-21頁。17. 黃文隆,「財務危機預警模式建立與驗證」,東吳大學管理科學研究所未出版博士論文,1993。18. 黃宛華,「資訊服務智慧資本之研究」,國立政治大學科技管理研究所未出版碩士論文,1999。19. 董碧玫,「智能資本之衡量:以國內資訊電子產業為例」,國立中央大學企業管理研究所未出版碩士論文,2001。20. 潘玉葉,「台灣股票上市公司財務危機預警分析」,淡江大學管理科學研究所未出版博士論文,1990。21. 蔡秋田,「運用類神經網路預測上市公司營運困難之研究」,國立成功大學會計研究所未出版碩士論文,1995。22. 蔡基德,「資訊電子業市場價值與帳面淨值之差異探討」,國立台灣大學會計學研究所未出版碩士論文,2001。23. 簡志豪,「影響智慧資本因子之研究─以我國上市資訊電子股為例」,逢甲大學會計與財稅研究所未出版碩士論文,2001。24. 簡德年,「智慧資本構面下企業危機診斷模式之建構-類神經網路、分類迴歸樹與鑑別分析方法之應用」,國立台北科技大學商業自動化與管理研究所未出版碩士論文,2001。25. Altman, E. I., “Financial Ratios, Discriminant Analysis, and the Prediction of Corporate Bankruptcy,” Journal of Finance, Vol.23, No.4, September 1968, pp.589-609.
26. Altman, E. I., Haldeman, R. G. and Narayanan, P., “Zeta Analysis, A New Model to Identify Bankruptcy Risk of Corporations,” Journal of Banking and Finance, Vol.1, June 1977, pp.29-54.
27. Altman, E. I., “Corporate Financial Distress: A Complete Guide to Predicting, Avoiding and Dealing with Bankruptcy”, New York: John Wiley and Sons, 1983.
28. Altman, E. I., Marco, G. and Varetto, F., “Corporate Distress Diagnosis: Comparisons Using Linear Discriminant Analysis and Neural Networks(the Italian Experience), ” Journal of Banking and finance, Vol.18, 1994, pp.505-529.
29. Beaver, W. H., “Financial Ratios and Predictors of Failure,” Empirical Research in Accounting; Selected studies, Supplement to Journal of Accounting Research, Vol.4, 1966, pp.71-111.
30. Bell, C. R., “Intellectual Capital,” Executive Excellence, Vol.14, Issue1, 1997, pp.15.
31. Blum, M., “Failing Company Discriminant Analysis,” Journal of Accounting Research, Vol.12, Spring 1974, pp.1-25.
32. Bontis, N., “Intellectual Capital: An Exploratory Study that Develops Measures and Models,” Management Decision, Vol.36, No.2, 1998, pp.63-76.
33. Brooking, A., Intellectual Capital, London: International Thomson Business Press, 1996.
34. Chung, H. M. and Tam, K. Y., “A Comparative Analysis of Inductive Learning Algorithm,” Intelligent Systems in Accounting, Finance, and Management, Vol.2, 1993, pp.3-18.
35. Coats, P. K. and Fant, L. F., “Recognizing Financial Distress Patterns Using a Neural Network Tool,” Financial Management, Vol.22, Autumn 1993, p.142-155.
36. Deakin, E., “A Discriminant Analysis of Predictors of Business Failure, ” Journal of Accounting Research, Vol.10, Spring 1972, pp.167-179.
37. De Gooijer, J. G., Ray, B. K., and Krager, H., “Forecasting Exchange Rates Using TSMARS,” Journal of International Money and Finance, Vol.17, Issue 3, June 1, 1998, pp.513-534.
38. Drucker, P. F., Post-Capitalist Society, Butterworth Heinemann, Oxford, 1993.
39. Dutta, S. and Shskhar, S., “Bond Rating: A Non-Conservative Application of Neural Networks,” Proceedings of the IEEE International Conference on Neural Networks-San Diego, Vol.2, 1988, pp.443-450.
40. Edvinsson, L. and Malone, M. S., “Intellectual Capital,” HarperCollins Publishers, Inc., New York, 1997.
41. Flagg, J. C., Giroux, G. A., and Wiggins, C. E., “Predicting Corporate Bankruptcy Using Failing Firms,” Review of Financial Economics, Vol.1, fall 1991, pp.67-78.
42. Fletcher, D. and Goss, E., “Forecasting with Neural Networks: An Application Using Bankruptcy Data,” Information and Management, Vol.24, No.3, 1993, pp.159-167.
43. Foster, G., Financial Statement Analysis, Englewood Cliffs, New Jersey: Prentice-Hall Inc., 1978.
44. Friedman, J. H., “Multivariate Adaptive Regression Splines(with discussion)”, Annals of Statistics, Vol.19, 1991, pp.1-141.
45. Friedman, J. H. and Roosen, C. B., “An Introduction to Multivariate Adaptive Regression Splines,” Statistical Methods in Medical Research, Vol.4, 1995, pp.197-217.
46. Griffin, W. L., Fisher, N. I., Friedman, J. H., and Ryan, C. G., ”Statistical Techniques for the Classification of Chromites in Diamond Exploration Samples”. Journal of Geochemical Exploration, Vol.59, 1997, pp.233-249.
47. Hutchinson, J. M., Lo, A. W., and Poggio, T., “A Nonparametric Approach to Pricing and Hedging Derivative Securities via Learning Networks,” Journal of Finance, Vol.49, No.3, 1994, pp.851-889.
48. Jensen, M. C., and Meckling, W., “Theory of the Firm: Managerial Behavior, Agency Costs and Ownership Structure,” The Journal of financial Economics, Vol.3, October 1976, pp.305-360.
49. Kaplan, R. S. and Norton, D. P., “The Balanced Scorecard: Translating Strategy into Action,” the president and fellows of Harvard College, 1996.
50. Karels, G. V. and Prakash, A. J., “Multivariate Normality and Forecasting of Business Bankruptcy,” Journal of Business Finance and Accounting, Vol.14, No.4, Winter 1987, pp.573-593.
51. Kryzanowski, L. and Galler, M., “Analysis of Small-Business Financial Statements Using Neural Nets,” Journal of Accounting, Auditing and Finance, Vol.10, No.1, 1995, pp.147-172.
52. Kuhnert, P. M., Do, Kim-Anh, and McClure, R., “Combining non-parametric models with logistic regression: an application to motor vehicle injury data,” Computational Statistics and Data Analysis, Vol.34, 2000, pp.371-386.
53. Larry, M., Efraim, T., and Robert R. T., Neural Network Fundamentals for Financial Analysts. In Robert R. Trippi, and Efraim Turban(ED.), Neural Networks: in Finance and Investing, Chicago, Probus Publishing Company, 1993, pp.3-25.
54. Lau, A. H-L, “A Five-State Financial Distress Prediction Model,” Journal of Accounting Research, Vol.25, No.1, Spring 1987, pp.127-138.
55. Lewis, P. A. W. and Stevens, J. G., “Nonlinear Modeling of Time Series Using Multivariate Adaptive Regression Splines(MARS),” Journal of American Statistical Association, Vol.86, 1991, pp.864-877.
56. Marshall, G., Grover, F. L., and Henderson, W. G., Hammermeister, K. E., “Assessment of Predictive Models for Binary Outcomes: An Empirical Approach Using Operative Death from Cardiac Surgery,” Statistical Med., Vol.13, 1994, pp.1501-1511.
57. Nguyen-Cong V., Van D. G. and Rode, B. M., “Using Multivariate Adaptive Regression Splines to QSAR Studies of Dihydroartemisinin Derivatives,” Eur. J Med. Chem., Vol.31, 1996, pp.797-803.
58. Ohlson, J. A., “Financial Ratios and the Probabilistic Prediction of Bankruptcy,” Journal of Accounting Research, Vol.18, Spring 1980, pp.109-131.
59. Papelu, K. G., Paul, M. H., and Victor, L. B., Business Analysis & Valuation, South-Western College Publishing Co., 2000.
60. Qnet97-Neural Network Modeling for Windows 95/98/NT, Vesta Services, Inc., Winnetka, IL, 1998.
61. Stewart, T. A., “Your Company’s Most Valuable Asset: Intellectual Capital,” Fortune, 3, October 1994, pp.68-74.
62. Stewart, T. A., “Intellectual Capital: The New Wealth of Organizations,” Bantam Doubleday Dell Publishing Group, Inc., New York, 1997.
63. Stone, G., Chan, D., Kuhnert, P. M., and Cameron, M., “Some Experience in the Analysis of Large and Complex Datasets,” Computing Science and Statistics, Proceedings of the Second World Congress of the IASC, Vol.29, 1997.
64. Sveiby, K., “The New Organizational Wealth- Managing and Measuring Knowledge-Based Assets”, Big Apple Tuttle-Mori Agency, Incm Co., Ltd., 1997.
65. Swales, G. S. and Yoon, Y., “Applying Artificial Neural Networks to Investment Analysis,” Financial Analysts Journal, Vol.48, Iss.5, Sep./Oct. 1992, pp.78-80.
66. Ulrich, D., “Intellectual Capital = Competence * Commitment,” Sloan Management Review, Vol. 39, No.2, Winter 1998, pp. 15-26.
67. Von Krogh, G., Roos, J. and Slocum, K., “An Essay on Corporate Epistemology,” Strategic Management Journal, Vol.15, 1994.
68. Ward, T. J. and Foster, B. P., “A Not on Selecting a Response Measure for Financial Distress,” Journal of Business Finance and Accounting, Vol. 24, July 1997, pp.869-879.
69. Wilson, R. L. and Sharda, R., “Bankruptcy Prediction Using Neural Networks,” Decision Support Systems, Vol.11, No.5, 1994, pp.545-557.
70. Wong, F. and Lee, D., “A Hybrid Neural Network for Stock Selection,” In Proceedings of the 2nd Annual International Conference on Neural Networks, 1993.
71. Yamamoto, Y. and Zenios, S. A., “Predicting Prepayment Rates for Mortgages Using the Cascade-Correlation Learning Algorithm,” Journal of Fixed Income, Vol.2, No.4, 1993, pp.86-96.
72. Zhang, G., Patuwo, B. E., and Hu, M. Y., “Forecasting with artificial neural networks: The state of the art,” International Journal of Forecasting, Vol.14, 1998, pp.35-62.
73. Zmijewski, M. E., “Methodological Issues Related to the Estimation of financial Distress Prediction Models,” Supplement to Journal of Accounting Research, Vol.22, 1984, pp. 59-82.