Abu-Mahfouz, I. (2003). Drilling wear detection and classification using vibration signals and artificial neural network. International Journal of Machine Tools and Manufacture, 43(7), 707-720.
Ahilan, C., Kumanan, S., Sivakumaran, N., & Dhas, J. E. R. (2013). Modeling and prediction of machining quality in CNC turning process using intelligent hybrid decision making tools. Applied Soft Computing, 13(3), 1543-1551.
Aljunid, D. S. A., Anuar, D. M. S., Salimi, D. M. N., Ismail, D. K. A., Shahrom, M. S., Yahya, N. M., & Yusoff, A. R. (2013). Malaysian Technical Universities Conference on Engineering & Technology 2012, MUCET 2012Taguchi Method Approach on Effect of Lubrication Condition on Surface Roughness in Milling Operation. Procedia Engineering, 53, 594-599.
Bhuiyan, M. S. H., Choudhury, I. A., Dahari, M., Nukman, Y., & Dawal, S. Z. (2016). Application of acoustic emission sensor to investigate the frequency of tool wear and plastic deformation in tool condition monitoring. Measurement, 92, 208-217.
Bustillo, A., & Correa, M. (2012). Using artificial intelligence to predict surface roughness in deep drilling of steel components. Journal of Intelligent Manufacturing, 23(5), 1893-1902.
Chen, M., Zhao, W.-S., & Xi, X.-C. (2015). Augmented Taylor''s expansion method for B-spline curve interpolation for CNC machine tools. International Journal of Machine Tools and Manufacture, 94, 109-119.
Dos Santos, A. L. B., Duarte, M. A. V., Abrão, A. M., & Machado, A. R. (1999). An optimisation procedure to determine the coefficients of the extended Taylor''s equation in machining. International Journal of Machine Tools and Manufacture, 39(1), 17-31.
Duro, J. A., Padget, J. A., Bowen, C. R., Kim, H. A., & Nassehi, A. (2016). Multi-sensor data fusion framework for CNC machining monitoring. Mechanical Systems and Signal Processing, 66–67, 505-520.
Emmelmann, C., Zaeh, M. F., Graf, T., Schmidt, M., Fornaroli, C., Holtkamp, J., & Gillner, A. (2013). Lasers in Manufacturing Laser-Beam Helical Drilling of High Quality Micro Holes. Physics Procedia, 41, 661-669.
Ghosh, N., Ravi, Y., Patra, A., Mukhopadhyay, S., Paul, S., Mohanty, A., & Chattopadhyay, A. (2007). Estimation of tool wear during CNC milling using neural network-based sensor fusion. Mechanical Systems and Signal Processing, 21(1), 466-479.
Gill, S. S., Singh, R., Singh, J., & Singh, H. (2012). Adaptive neuro-fuzzy inference system modeling of cryogenically treated AISI M2 HSS turning tool for estimation of flank wear. Expert Systems with Applications, 39(4), 4171-4180.
Groover, M. P. (2007). Fundamentals of modern manufacturing: materials processes, and systems: John Wiley & Sons.
Huang, P. B., Shiang, W.-J., Jou, Y.-T., Chang, C., & Ma, C. (2010). An in-process adaptive control of surface roughness in end milling operations. Paper presented at the International Conference on Machine Learning and Cybernetics (ICMLC),1191-1194.
Kayacan, E., Ulutas, B., & Kaynak, O. (2010). Grey system theory-based models in time series prediction. Expert Systems with Applications, 37(2), 1784-1789.
Kıvak, T., Samtaş, G., & Çiçek, A. (2012). Taguchi method based optimisation of drilling parameters in drilling of AISI 316 steel with PVD monolayer and multilayer coated HSS drills. Measurement, 45(6), 1547-1557.
Kong, L., Chin, J.-H., Li, Y., Lu, Y., & Li, P. (2014). Targeted suppression of vibration in deep hole drilling using magneto-rheological fluid damper. Journal of Materials Processing Technology, 214(11), 2617-2626.
Li, J., Broas, M., Raami, J., Mattila, T. T., & Paulasto-Kröckel, M. (2014). Reliability assessment of a MEMS microphone under mixed flowing gas environment and shock impact loading. Microelectronics Reliability, 54(6–7), 1228-1234.
Lin, S., & Lin, R. (1996). Tool wear monitoring in face milling using force signals. Wear, 198(1), 136-142.
Liu, S., & Lin, Y. (2006). Grey information: theory and practical applications: Springer Science & Business Media.
Madinei, H., Rezazadeh, G., & Sharafkhani, N. (2013). Study of structural noise owing to nonlinear behavior of capacitive microphones. Microelectronics Journal, 44(12), 1193-1200.
Maia, L. H. A., Abrao, A. M., Vasconcelos, W. L., Sales, W. F., & Machado, A. R. (2015). A new approach for detection of wear mechanisms and determination of tool life in turning using acoustic emission. Tribology International, 92, 519-532.
Masmoudi, S., El Mahi, A., & Turki, S. (2016). Fatigue behaviour and structural health monitoring by acoustic emission of E-glass/epoxy laminates with piezoelectric implant. Applied Acoustics, 108, 50-58.
Moon, J.-S., Yoon, H.-S., Lee, G.-B., & Ahn, S.-H. (2014). Effect of backstitch tool path on micro-drilling of printed circuit board. Precision Engineering, 38(3), 691-696.
Nouri, M., Fussell, B. K., Ziniti, B. L., & Linder, E. (2015). Real-time tool wear monitoring in milling using a cutting condition independent method. International Journal of Machine Tools and Manufacture, 89, 1-13.
Pai, T., Tsai, Y., Lo, H., Tsai, C., & Lin, C. (2007). Grey and neural network prediction of suspended solids and chemical oxygen demand in hospital wastewater treatment plant effluent. Computers & Chemical Engineering, 31(10), 1272-1281.
Rey, P., LeDref, J., Senatore, J., & Landon, Y. (2016). Modelling of cutting forces in orbital drilling of titanium alloy Ti–6Al–4V. International Journal of Machine Tools and Manufacture, 106, 75-88.
Rizal, M., Ghani, J. A., Nuawi, M. Z., & Haron, C. H. C. (2013a). The Application of I-kaz TM-based Method for Tool Wear Monitoring Using Cutting Force Signal. Procedia Engineering, 68, 461-468.
Rizal, M., Ghani, J. A., Nuawi, M. Z., & Haron, C. H. C. (2013b). Online tool wear prediction system in the turning process using an adaptive neuro-fuzzy inference system. Applied Soft Computing, 13(4), 1960-1968.
Shanmughasundaram, P., & Subramanian, R. (2014). Study of parametric optimization of burr formation in step drilling of eutectic Al–Si alloy–Gr composites. Journal of Materials Research and Technology, 3(2), 150-157. .
Wang, K.-C. (2011). A hybrid Kansei engineering design expert system based on grey system theory and support vector regression. Expert Systems with Applications, 38(7), 8738-8750.
Wessels, P. W., & Basten, T. G. H. (2016). Design aspects of acoustic sensor networks for environmental noise monitoring. Applied Acoustics, 110, 227-234.
Wu, W., Lin, T. R., & Tan, A. C. C. (2015). Normalization and source separation of acoustic emission signals for condition monitoring and fault detection of multi-cylinder diesel engines. Mechanical Systems and Signal Processing, 64–65, 479-497.
Yin, M.-S., & Tang, H.-W. V. (2013). On the fit and forecasting performance of grey prediction models for China’s labor formation. Mathematical and Computer Modelling, 57(3–4), 357-365.
Zhaojun, Y., Wei, L., Yanhong, C., & Lijiang, W. (1998). Study for increasing micro-drill reliability by vibrating drilling. Reliability engineering & system safety, 61(3), 229-233.
Zhu, W.-H., & Lamarche, T. (2008). Position Tracking Control with Velocity from Accelerometer and Encoder. IFAC Proceedings Volumes, 41(2), 14828-14833.
何建霖. (2001). 電腦輔助塑膠模具設計製造能力本位訓練教材. 行政院勞工委員會職業訓練局.
呂如梅. (2013). 微機電麥克風技術簡介. 國家奈米元件實驗室奈米通訊, 20(4), 21-27.祁忠勇. (1994). FFT與訊號處理簡介. 中研院數學所 數學傳播 十八卷四期.
侯衛華, 郭暉, 劉明峰, 于宗光. (2008). 一款基於 MVR—CORDIC 的高速 64 點基一 4FFT 處理器. 電子與封装, 8(5), 22-25.
張達元. (2011). 電腦視覺應用於微孔陣列位置度誤差與微鑽針製程刀具壽命之研究. 行政院國家科學委員會專題研究計畫.
陳天生&黃寶建. (2005). 數控工具機原理與實習. 新北市,高立圖書有限公司.
陳清豪, & 洪志真. (2009). 監控線性趨勢製程之研究.
黃惠隆, 翁忠川, & 黃月貞. (2004). 以車輛偵測器推估旅行時間之研究—以北二高為例, 中華技術季刊.
溫坤禮, 趙忠賢, 張宏志, 陳曉瑩, & 溫惠筑. (2009). 灰色理論與應用 (初版), 台北: 五南圖書出版股份有限公司.
趙哲新. (2009). 以表面聲波陣列式震盪電路為基礎之氣體感測系統. 清華大學工程與系統科學系學位論文, 1-97.
潘文超. (2006). 以灰色預測與類神經模糊推論系統預測台股加權指數之研究: 遠東學報.鄧聚龍. (2002). 灰理論基礎: 武漢: 華中科技大學出版社.