跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.59) 您好!臺灣時間:2025/10/17 02:23
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:謝幃鈞
研究生(外文):Wei-Chun Hsieh
論文名稱:含碳物質對成雲之衝擊:焚雲效應與覆膜效應
論文名稱(外文):The impacts of carbonaceous chemicals on cloud formation: cloud burning effect and surface film effect
指導教授:陳正平陳正平引用關係
指導教授(外文):Jen Ping Chen
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:大氣科學研究所
學門:自然科學學門
學類:大氣科學學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:英文
論文頁數:105
中文關鍵詞:活化含碳物質
外文關鍵詞:carbonaceous compoundsactivation
相關次數:
  • 被引用被引用:0
  • 點閱點閱:360
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究結合理論發展,並利用一雲氣塊模式來探討當雲凝結核內包含煤灰粒子和可形成薄膜的有機化合物對雲滴活化過程的影響。煤灰粒子的加熱會提高粒子的臨界飽和比,具有延遲氣懸膠活化成雲滴的特性,這個個體效應在粒子大且含有較高的煤灰質量時具有較顯著的作用。再者,氣懸粒子的整體加熱具有兩個相反的效應,其一為粒子加熱效應會提高粒子的柯勒曲線,減緩所有粒子的凝結過程,導致氣塊飽和比升高,使得雲滴數量濃度增加;其二為加熱影響氣相環境溫度,使得環境飽和蒸氣壓升高而氣塊飽和比降低,進而造成雲滴數量濃度減少。在本研究中,考慮四種加熱情況的模擬,分別為(1)煤灰粒子不加熱,僅以不可溶解的物質存在於雲凝結核中;(2)煤灰加熱氣懸粒子,但假設僅影響粒子溫度,熱量不傳至空氣中;(3)煤灰加熱僅作用於氣相環境,影響氣相溫度,但氣懸粒子溫度不受影響;(4)煤灰粒子加熱同時影響粒子與氣相溫度。結果顯示雲滴數量濃度變化是正是負,取決於煤灰加熱粒子和環境兩種相反作用的競爭效應,其相對大小受控於氣懸粒子內煤灰質量多寡以及煤灰粒子與雲凝結核的混合狀態。
可形成薄膜的有機化合物(Film Forming Compound, FFC)覆蓋在粒子表面會導致水的凝結係數下降,阻礙粒子的質量成長。過去對這方面的研究,凝結係數和覆蓋率的關係多以Heaviside function描述,即FFC覆蓋率必須超過某個臨界值,凝結係數才會遽降為一定值。然而根據以往的實驗數據,此關係應為連續。本研究發展一個新的方法來表現此連續關係,理論分析相當吻合實驗結果。FFC具有遲緩粒子質量成長的效應,會導致雲內飽和比提高,使得較多的粒子有機會被活化成雲滴,進而增加雲滴數量濃度。然而,FFC也會巨幅加長成長特性時間,使得某些粒子來不及被活化,造成雲滴數量濃度減少。因此,FFC對雲滴活化過程的影響可能不如前人所認為是單向的。模擬結果顯示此效應的強弱與FFC總量、FFC分配、凝結係數被改變的程度、初始氣膠粒徑譜以及上升速度等有關。
This study applies theoretical analyses and numerical simulations to show how the cloud drop activation process is influenced by the presence of Black Carbon (BC) and Film-Forming Compounds (FFC). BC heating has the effect of raising critical saturation ratio of the droplet and may delay the activation of the aerosol into a cloud drop. The effect is stronger in larger Cloud Condensation Nuclei (CCN) that contain higher amount of BC. Total heating effect that contributes by the sum of whole aerosol population has two opposite effects. One is that BC heating will raise the köhler curves of droplets and then retard their growth. This will cause the parcel supersaturation to raise thus results in an increase of cloud drop concentration. However, BC heating on air parcel would cause a decrease in parcel supersaturation, thus causing the cloud drop number concentration to decrease. We investigate these mechanisms by considering four heating scenarios : (1) The BC has no heating effect, just sever as an insoluble core within CCN; (2) The BC heats droplets and raises the temperature of droplets but not the air; (3) The BC heats the air only, not the droplets; (4) The BC heating exerts on both droplets and air parcel. Simulation results show that BC heating effect can positively or negatively influence the cloud drop number concentration, depending on the relative strength of the two opposite heating effects, which is determined by the mixing state of the BC in CCN as well as the total BC mass.
The FFC effect causes a significant decrease in water accommodation coefficient (��) and thus retards the mass growth of droplets. Previous studies used a discrete method to describe �� and FFC coverage relationship: beyond a critical value of FFC coverage, �� is decreased abruptly to a fixed low value. By reexamining early laboratory experiment data and relevant theories, we develop a new method of calculating the ���ndependence as a continuous function of FFC coverage, and such parameterization fits very well with experimental results. The FFC has the effect of delayed growth of droplets and may results in raise of parcel supersaturation which means much more particles could be activated and thus enhances cloud drop number concentration. However, FFC effect also increases the characteristic time of growth. So some of the CCN may not be timely activated, causing a decrease in cloud drop number concentration. Thus the influence of FFC on cloud drop concentration may go either ways. The overall effect is strongly dependent on the amount of FFC, its distribution among particles, the extent to which the ���n�nwas modified, the size distribution of CCN, and the updraft velocity.
List of Tables iii
List of figures iv
Chapter 1. Introduction 1
Chapter 2. Method 6
2.1. Black carbon heating effect 6
2.1.1. Radiative heating by black carbon 6
2.1.2. The “heated” Köhler curves 7
2.1.3. BC heating effect on critical radius and supersaturation of droplet 9
2.1.4. Condensation growth equation 10
2.2. FFC Effect 13
2.2.1. Gas-kinetic theory of condensation 14
2.2.2. Experimental determination of condensation coefficient 15
2.2.3. Parameterization of the condensation coefficient 17
2.3. Cloud parcel model 18
Chapter 3. Black Carbon Effect Simulation 20
3.1. Mixture and heating scenarios 20
3.2. Results 20
3.2.1. Effect of mixture states 20
3.2.2. Effect of aerosol types 23
3.2.3. Total black carbon mass effect 24
3.2.4. Black carbon mass fraction effect 25
3.2.5. Dynamic response 26
3.3. Summary 27
Chapter 4. FFC Effect Simulation 29
4.1. Distribution of FFC among particles 29
4.1.1. Nonvolatile FFC 29
4.1.2. Volatile FFC 30
4.2. Results 32
4.2.1. FFC mass effect 32
4.2.2. FFC coverage effect 35
4.2.3. FFC distribution method effect 37
4.2.4. Dynamic response 38
4.3. Summary 39
Chapter 5. Concluding Remarks 42
5.1. Conclusion 42
5.2. Future perspectives 43
References 45
Appendix A Solution of gas diffusion problem equations (2.18) to (2.21) 50
Ackerman, A., and O. Toon, 1996: Unrealistic dessication of marine stratocumulus clouds by enhanced solar absorption. Nature, 380, 512– 515.
Ackerman, A. S., O. B. Toon, D. E. Stevens, A. J. Heymsfield, V. Ramanathan, and E. J. Welton, 2000: Reduction of tropical cloudiness by soot, Science, 288, 1042–1047.
Archer, R. J., and V. K. La Mer, 1955: The rate of evaporation of water through fatty acid. J. Phys. Chem., 59, 200-208.
Barnes, G. T., and V. K. La Mer, 1962: The evaporation resistances of monolayers of long-chain acids and alcohols and their mixtures. Retardation of Evaporation by Monolayers, V. K. La Mer, Ed., Academic Press, 9-33.
Barnes, G. T., 1986: The effects of monolayers on the evaporation of liquids, Adv. Colloid Interface Sci., 25, 89-200.
Bigg, E. K., 1986: Discrepancy between observation and prediction of concentrations of cloud condensation nuclei, Atmos. Res., 20, 82-86.
Charlson, R. J., S. E. Scheartz, J. M. Hales, R. D. Cess, J. A. Coakley, Jr., J. E. Hansen, and D. J. Hofmann, 1992: Climate forcing by anthropogenic aerosols. Science, 255, 423-430.
Charlson, R. J., J. H. Seinfeld, A. Nenes, M. Kulmala, A. Laaksonen, and M. C. Facchini, 2001: Reshaping the theory of cloud formation. Science, 292, 2025-2026.
Chen, J. P., and D. Lamb, 1992: The evolution of saturation ratio. Preprints, 11th International Conference on Clouds and Precipitation, August 17-21, 1992, Montreal, Canada, 322-325.
Chen, J. P., 1994: Predictions of saturation ratio for cloud microphysical models. J. Atmos. Sci., 51, 1332-1338.
Chen, J. P., 1994: Theory of deliquescence and modified Köhler curves. J. Atmos. Sci., 51, 3505-3516.
Chen, J. P. and D. Lamb, 1994: Simulation of cloud microphysical and chemical processes using a multicomponent framework. Part I: Description of Microphysical Model. J. Atmos. Sci., 51, 2613-2630.
Chen, J. P. and S. T. Liu, 2004: Physically based two-moment bulkwater parameterization for warm-cloud microphysics. Q. J. R. Meteorol. Soc., 130, 51-78.
Chuang, P. Y., R. J. Charlson, and J. H. Seinfeld: Kinetic limitations on droplet formation in clouds. Nature, 390, 594-596.
Conant, W. C., A. Nenes, and J. H. Seinfeld, 2002: Black carbon radiative heating effects on cloud microphysics and implications for the aerosol indirect effect, 1, Extended Köhler theory. J. Geophys. Res., 107, doi:10.1029/2002JD002094.
Cruz, C. N. and S. N. Pandis, 1998: The effect of organic coatings on the cloud condensation nuclei activation of inorganic atmospheric aerosol. J. Geophys. Res., 20, 13,111-13.123.
Derjaguin, B. V., V. A. Fedoseyev, and L. A. Rosenzweig, 1966: Investigation of the adsorption of cetyl alcohol vapor and the effect of this phenomenon on the evaporation of water drops. J. Colloid Interface Sci., 22, 45-50.
Derjaguin, B. V. and Iu. S. Kurghin, 1969: Theory of passivation of the growth of water condensation nuclei by cetyl alcohol vapour. Proc. Int. Conf. Condes. Ice Nucleation 7th, pp 461.
Derjaguin, B. V., Yu. S. Kurghin, S. P. Bakanov, and K. M. Merzhanov, 1985: Influence of surfactant vapor on the spectrum of cloud drops forming in the process of condensation growth. Langmuir, 1, 278-281.
Facchini, M. C., M. Mircea, S. Fuzzi, and R. J. Charlson, 1999: Cloud albedo enhancement by surface-active organic solutes in growing droplets. Nature, 401, 257-259.
Feingold, G. and P. Y. Chuang, 2002: Analysis of the Influence of Film-Forming Compounds on Droplet Growth: Implications for Cloud Microphysical Processes and Climate. J. Atmos. Sci., 59, 2006-2018.
Frost, A. E., M. Seaver, and G. O. Rubel, 1994: Delayed appearance of the liquid-condensed phase in 1-octadecanol films on levitated waterdrops. J. Chem. Phys., 100, 3268-3275.
Garrett, W. D., 1971: Retardation of water drop evaporation with monomolecular surface films. J. Atmos. Sci., 28, 816-819.
Garrett, W. D., 1978: The impact of organic material on cloud and fog processes. Pageoph, 116, 317-334.
Gill, P. S., T. E. Graedel, and C. J. Weschler, 1983: Organic films on atmospheric aerosol particles, fog droplets, cloud droplets, raindrops, and snowflakes. Rev. Geophys. Space Phys., 21, 903-920.
Hansen, J., M. Sato, and R. Ruedy, 1997: Radiative forcing and climate response. J. Geophys. Res., 102, 6831-6864.
Jacobson, M. C., H.-C. Hansson, K. J. Noone, and R. J. Charlson, 2000: Organic atmospheric aerosols: Review and state of the science, Rev. Geophys., 38, 267-294.
Jarvis, N. L., 1965: Surface viscosity of monomolecular films of long-chain aliphatic amides, amines, alcohols, and carboxylic acids. J. Phys. Chem., 69, 1789-1797.
Kotzick, R., U. Panne and R. Niessner, 1997: Changes in condensation properties of ultrafine carbon particles subjected to oxidation by ozone, J. Aerosol Sci., 28, 725-735.
La Mer, V. K., T. W. Healy, and L. A. G. Aylmore, 1964: The transport of water through monolayers of long-chain n-Paraffinic alcohols. J. Colloid Sci., 19, 673-684.
Nenes, A., S. Ghan, H. Abdul-Razzak, P. Y. Chuang, and J. H. Seinfeld, 2001: Kinetic limitations on cloud droplet formation and impact on cloud albedo. Tellus, 53B, 133-149.
Nenes, A., W. C. Conant, and J. H. Seinfeld, 2002: Black carbon radiative heating effects on cloud microphysics and implications for the aerosol indirect effect, 2, Cloud microphysics. J. Geophys. Res., 107, doi:10.1029/2002JD002101.
Nenes, A., R. J. Charlson, M. C. Facchini, M. Kulmala, A. Laaksonen, and J. H. Seinfeld, 2002: Can chemical effects on cloud droplet number rival the first indirect effect? Geophys. Rev. Lett. , 29, 29-1-29-4.
Podzimek, J., and A. N. Saad, 1975: Retardation of condensation nuclei growth by surfactant. J. Geophys. Res., 80, 3386-3392.
Pruppacher, H. R., and J. D. Klett, 1997: Microphysics of Clouds and Precipitation. Kluwer Academic Publishers.
Rogge, W. F., M. A. Mazurek, L. M. Hildemann, G. R. Cass, and B. R. T. Simoneit, 1993: Quantification of urban organic aerosols at a molecular level: Identification, abundance and seasonal variation. Atmos. Environ., 27A, 1309-1330.
Rubel, G. O. and J. W. Gentry, 1984: Measurement of the kinetics of solution droplets in the presence of absorbed monolayers: Determination of water accommodation coefficients. J. Phys. Chem., 88, 3142-3148.
Saxena, P., L. M. Hildemann, P. H. McMurry and J. H. Seinfeld, 1995: Organics alter the hygroscopic behavior of atmospheric particles, J. Geophys. Res., 100, 18,755-18,770.
Seaver, M., J. R. Peele, T. J. Manuccia, G. O. Rubel, and G. Ritchie, 1992: Evaporation kinetics of ventilated waterdrops coated with octadecanol monolayers. J. Phys. Chem., 96, 6389-6394.
Shulman, M. L., M. C. Jacobson, R. J. Charlson, R. E. Synovec, and T. E. Young, 1996: Dissolution behavior and surface tension effects of organic compounds in nucleating cloud droplets. Geophys. Rev. Lett., 23, 277-280.
Toon, O.B., and T. P. Ackerman, 1981: Algorithms for the calculation of scattering by stratified spheres. Appl. Opt., 20, 3657-3660.
Whitby, K. T., 1978: The Physical characteristics of sulfur aerosols. Atmos. Environ., 12, 135-159.
Xiong, J. Q., M. Zhong, C. Fang, L. C. Chen, and M. Lippmann, 1998: Influence of organic films on the hygroscopicity of ultrafine sulfuric acid aerosol. Environ. Sci. Technol., 32, 3536-3541.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top