跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.134) 您好!臺灣時間:2025/12/22 06:40
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林煜宸
研究生(外文):Yu-Chen Lin
論文名稱:1,8號位雙取代之萘衍生物之合成、性質探討
論文名稱(外文):Synthesis and Characterization of 1,8-Disubstituted of Naphthalene Derivatives
指導教授:梁文傑梁文傑引用關係
指導教授(外文):Man-kit Leung
口試委員:周大新邱天隆
口試委員(外文):Tahsin J. ChowTien-Lung Chiu
口試日期:2015-01-20
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:化學研究所
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:272
中文關鍵詞:peri咔唑噁二唑苯并咪唑丁腈硝基甲酸基雙偶極有機發光二極體(OLED)
外文關鍵詞:naphthalenepericarbazoleoxadiazolebenzimidazolenitrileformic acidbipolarbromineOLED
相關次數:
  • 被引用被引用:0
  • 點閱點閱:153
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本篇論文是以萘環為結構中心,選擇在具有立體障礙的1,8位置(Peri)分別接上一個咔唑基團以及不同拉電子基團(噁二唑、苯并咪唑、丁腈、硝基、甲酸基),合成一系列可藉由立體障礙阻斷共軛的雙偶極咔唑化合物。由於推拉電子基團之間的距離十分接近,所以針對不同拉電子基的化合物進行光物理及電化學性質的測量與比較,並觀察基團間可能的交互作用。另外,將咔唑基團置換成具有重原子效應的溴原子,對這些不同拉電子基的萘溴衍生物進行光物理及電化學性質的比較與探討。
經由螢光、磷光光譜以及循環伏安法的測量結果,得知所有萘化合物的最低未填滿分子軌域(LUMO)及三重激發態都是位在萘環結構上,而且三重激發態的能階並不會隨著取代基改變而有太大的變化,其中雙偶極萘化合物皆在2.55 eV附近,以化合物12為代表與綠光磷光有機發光二極體(PhOLED)之客發光體Ir(ppy)3以及紅光磷光有機發光二極體之客發光體Ir(2-phq)2(acac)進行能量轉移實驗,得知其對於Ir(ppy)3與Ir(2-phq)2(acac)良好的能量轉移效率,未來也許有作為綠光及紅光有機發光二極體主發光體材料的潛力。


In this study, a series of bipolar compounds that containing carbazole group at the 8-position of naphthalene, and with the 1-position substituted by an electron-withdrawing group (oxadiazole, benzimidazole, nitrile, and nitro, formic acid) were synthesized. The 1,8-position di-substituted naphthalene, being called as peri-substituted of naphthalene derivatives, has large steric hindrance resulting an orthogonal arrangement that interrupted the conjugation between the donating and the withdrawing groups. The 8-position substituted carbazole of naphthalene derivatives were discussed that intermolecular interaction between carbazole and withdrawing moieties and through measuring photophysical and electrochemical properties. Furthermore, we replaced carbazole group with bromine which has heavy atom effect, and demonstrated the properties of these naphthalene derivatives with different withdrawing moieties through measuring photophysical and electrochemical properties.
Fluorescence, phosphorescence spectra and cyclic voltammetry were used to characterize the 1, 8-position di-substituted of naphthalene. The LUMO and the triplet state of all naphthalene derivatives are located in naphthalene structure. The triplet energy doesn’t change a lot with different substituent. The triplet energy of bipolar naphthalene derivatives are about 2.55 eV, and we found that compound 12 can transfer energy to the Ir(ppy)3 and the Ir(2-phq)2(acac) efficiently, so it is possible that these bipolar naphthalene derivatives become a good host material of green and red PhOLED.


摘要 I
Abstract II
目錄 IV
表目錄 VI
圖目錄 VIII
流程目錄 XIII
附錄目錄 XIV
化合物結構與編號 XVII
第一章 緒論 1
1.1前言 1
1.2有機分子電子躍遷形式6,7 2
1.3有機分子發光原理7,8,9 4
1.4螢光與分子結構7 7
1.5溶劑效應(Solvent effect)12 9
1.6 π-π交互作用(π-π interaction)13 10
第二章 文獻回顧 11
2.1 Peri位向取代萘環的相關文獻回顧 11
2.2研究動機與分子設計 24
第三章 結果與討論 30
3.1合成策略及方法 30
3.1.1噁二唑之咔唑化合物7、溴化合物6、對比物9之合成步驟 31
3.1.2苯并咪唑之咔唑化合物12、溴化合物11、對比物13之合成步驟 34
3.1.3丁腈之咔唑化合物16、溴化合物15、對比物n-CN之合成步驟 36
3.1.4硝基之咔唑化合物18、溴化合物17、對比物n-NO2之合成步驟 38
3.1.5羧酸基之咔唑化合物20、溴化合物3、對比物n-COOH之合成步驟 40
3.1.6 H之咔唑化合物21、溴化合物n-Br、對比物n之合成步驟 42
3.1.7三氮唑之咔唑化合物28 (失敗)、溴化合物25、對比物26之部分合成步驟 43
3.1.8 1號位置取代基為萘環之咔唑化合物30(失敗)、溴化合物29、對比物n-n之部分合成步驟 46
3.2 X-ray晶體結構解析 48
3.3光學性質分析 76
3.3.1光物理性質分析 76
3.3.2薄膜光物理性質分析 92
3.3.3固態粉末光物理性質分析 94
3.4電化學性質分析 96
3.5熱性質分析 114
3.6能量轉移實驗 118
第四章 結論 123
第五章 實驗部分 125
5.1實驗儀器與試劑 125
5.1.1儀器部分 125
5.1.2試劑與溶劑 126
5.2合成步驟 127
第六章 參考文獻 157
附錄 166
附錄一 化合物的X – ray晶體參數表、鍵長與鍵角資料 166
附錄二 化合物的氫核磁共振光譜及碳核磁共振光譜 223


1.Gonzalez-Rodriguez, D.; Schenning, A. P. H. J., Hydrogen-bonded Supramolecular π-Functional Materials†. Chemistry of Materials 2010, 23 (3), 310-325.
2.Burroughes, J. H.; Bradley, D. D. C.; Brown, A. R.; Marks, R. N.; Mackay, K.; Friend, R. H.; Burns, P. L.; Holmes, A. B., Light-emitting diodes based on conjugated polymers. Nature 1990, 347 (6293), 539-541.
3.Torsi, L.; Farinola, G. M.; Marinelli, F.; Tanese, M. C.; Omar, O. H.; Valli, L.; Babudri, F.; Palmisano, F.; Zambonin, P. G.; Naso, F., A sensitivity-enhanced field-effect chiral sensor. Nature Materials 2008, 7 (5), 412-417.
4.Leung, M.-k.; Hsieh, Y.-H.; Kuo, T.-Y.; Chou, P.-T.; Lee, J.-H.; Chiu, T.-L.; Chen, H.-J., Novel Ambipolar Orthogonal Donor–Acceptor Host for Blue Organic Light Emitting Diodes. Organic Letters 2013, 15 (18), 4694-4697.
5.Balasubramaniyan, V., peri Interaction in Naphthalene Derivatives. Chemical Reviews 1966, 66 (6), 567-641.
6.Lampman, P., Kritz, Vyvyan, Spectroscopy. 4th ed.; Cengage Learning India Pvt Ltd, New Delhi: 2012.
7.Skoog, H., Nieman, PRINCIPLES OF INSTRUMENTAL ANALYSIS. 5th ed.; Orlando, Fla. :Harcourt Brace College: Philadelphia :Saunders College, 1998.
8.Jaffe, H. H.; Miller, A. L., The fates of electronic excitation energy. Journal of Chemical Education 1966, 43 (9), 469-473.
9.Aleksander., J., Efficiency of Anti-Stokes Fluorescence in Dyes. Nature 1933, 131, 839-840.
10.Izergin, A. G.; Korepin, V. E., Pauli principle for one-dimensional bosons and the algebraic bethe ansatz. Letters in Mathematical Physics 1982, 6 (4), 283-288.
11.Wong, D. P., Theoretical justification of Madelung''s rule. Journal of Chemical Education 1979, 56 (11), 714-717.
12.Kucherak, O. A.; Didier, P.; Mely, Y.; Klymchenko, A. S., Fluorene Analogues of Prodan with Superior Fluorescence Brightness and Solvatochromism. The Journal of Physical Chemistry Letters 2010, 1 (3), 616-620.
13.Janiak, C., A critical account on [small pi]-[small pi] stacking in metal complexes with aromatic nitrogen-containing ligands. Journal of the Chemical Society, Dalton Transactions 2000, (21), 3885-3896.
14.Codson, C. A., Daudel, R., and Robertson, J. M, Proceedings of the Royal Society of London 1951, A207, 306.
15.Cruickshank, D. W. J., A detailed refinement of the crystal and molecular structure of naphthalene. Acta Crystallographica 1957, 10 (8), 504-508.
16.Jameson, M. B.; Penfold, B. R., 84. The crystal structure of an overcrowded aromatic compound: 3-bromo-1,8-dimethylnaphthalene. Journal of the Chemical Society (Resumed) 1965, (0), 528-536.
17.Davydova, M. A.; Struchkov, Y. T., Crystal structure of 1, 4, 5, 8- tetrachloronaphthalene. Journal of Structural Chemistry 1961, 2 (1), 63-65.
18.Davydova, M. A.; Struchkov, Y. T., Steric hindrances and the conformation of molecules. Journal of Structural Chemistry 1962, 3 (2), 170-184.
19.Davydova, M. A.; Struchkov, Y. T., Crystallographic data for 1, 4, 5, 8-tetrahalogen naphthalenes. Journal of Structural Chemistry 1962, 3 (2), 202-203.
20.Davydova, M. A.; Struchkov, Y. T., Steric hindrance and conformation of molecules communication No. 11. Crystal and molecular structure of 1,5-dibromo-4,8-dichloronaphthalene. Journal of Structural Chemistry 1965, 6 (1), 98-106.
21.Gafner, G., The crystal and molecular structures of overcrowded halogenated compounds. III. 1:4:5:8-Tetrachloronaphthalene. Acta Crystallographica 1962, 15 (11), 1081-1092.
22.Abadir, B. J.; Cook, J. W.; Gibson, D. T., 2. Synthesis of polymethylnaphthalenes. Journal of the Chemical Society (Resumed) 1953, (0), 8-17.
23.Heilbronner, E.; Frohlicher, U.; Plattner, P. A., Ultraviolett-Absorptionsspektren der Trimethyl-naphtaline. Helvetica Chimica Acta 1949, 32 (7), 2479-2488.
24.Mosby, W. L., The Ultraviolet Absorption Spectra of Some Polymethylnaphthalenes. Journal of the American Chemical Society 1953, 75 (14), 3348-3349.
25.Pearson, B. D., The electronic spectra of the nitronaphthylamines. Tetrahedron 1961, 12 (1–2), 32-40.
26.Oskengendler, G. M., and Gendrikov, E. P., Journal of general chemistry of the U.S.S.R 1959, 29, 3857.
27.Ogilvie, R. A., Ph.D. Thesis, Massachusetts Institute of Technology, Cambridge, U.S.A. 1971.
28.Clough, R. L.; Kung, W. J.; Marsh, R. E.; Roberts, J. D., Structural analysis of internally crowded naphthalene derivatives. peri-Diphenylacenaphthene. The Journal of Organic Chemistry 1976, 41 (22), 3603-3609.
29.Tsuzuki, S.; Tanabe, K.; Nagawa, Y.; Nakanishi, H., Calculations of internal rotational pathways of peri substituted naphthalenes by molecular mechanics. Journal of Molecular Structure 1990, 216 (0), 279-295.
30.Lee, M. T.; Foxman, B. M.; Rosenblum, M., Cofacial metallocenes. Synthesis and crystal structure of 1,8-diferrocenylnaphthalene. Organometallics 1985, 4 (3), 539-547.
31.Pieters, G.; Terrasson, V.; Gaucher, A.; Prim, D.; Marrot, J., Synthesis and Molecular Structure of Symmetrical 1,8-Diarylnaphthalenes. European Journal of Organic Chemistry 2010, 2010 (30), 5800-5806.
32.Komatsu, K.; Abe, N.; Takahashi, K.; Okamoto, K., 1-Aryl-8-tropylionaphthalene perchlorates: synthesis and intramolecular charge-transfer interaction. The Journal of Organic Chemistry 1979, 44 (15), 2712-2717.
33.Campbell, M. C.; Humphries, R. E.; Munn, N. M., Perchlorotriphenylene: a compound with severe molecular twisting? The Journal of Organic Chemistry 1992, 57 (2), 641-644.
34.Tsuji, R.; Komatsu, K.; Takeuchi, K. i.; Shiro, M.; Cohen, S.; Rabinovitz, M., Structural study on 1-phenyl- and 1-(2-naphthyl)-8-tropylionaphthalene hexafluoroantimonates. Journal of Physical Organic Chemistry 1993, 6 (8), 435-444.
35.Bahl, A.; Grahn, W.; Reisner, A.; Stadler, S.; Feiner, F.; Bourhill, G.; Brauchle, C.; Jones, P. G., Neuartige blautransparente Frequenzverdoppler auf der Basis von 1,8-Di(hetero)aryl-naphthalinen. Angewandte Chemie 1995, 107 (13-14), 1587-1590.
36.Holmes, R. J.; D’Andrade, B. W.; Forrest, S. R.; Ren, X.; Li, J.; Thompson, M. E., Efficient, deep-blue organic electrophosphorescence by guest charge trapping. Applied Physics Letters 2003, 83 (18), 3818-3820.
37.Ren, X.; Li, J.; Holmes, R. J.; Djurovich, P. I.; Forrest, S. R.; Thompson, M. E., Ultrahigh Energy Gap Hosts in Deep Blue Organic Electrophosphorescent Devices. Chemistry of Materials 2004, 16 (23), 4743-4747.
38.Kraft, A.; Grimsdale, A. C.; Holmes, A. B., Electroluminescent Conjugated Polymers—Seeing Polymers in a New Light. Angewandte Chemie International Edition 1998, 37 (4), 402-428.
39.Lussem, G.; Wendorff, J. H., Liquid crystalline materials for light-emitting diodes. Polymers for Advanced Technologies 1998, 9 (7), 443-460.
40.Friend, R. H.; Gymer, R. W.; Holmes, A. B.; Burroughes, J. H.; Marks, R. N.; Taliani, C.; Bradley, D. D. C.; Santos, D. A. D.; Bredas, J. L.; Logdlund, M.; Salaneck, W. R., Electroluminescence in conjugated polymers. Nature 1999, 397 (6715), 121-128.
41.Grell, M.; Bradley, D. D. C., Polarized Luminescence from Oriented Molecular Materials. Advanced Materials 1999, 11 (11), 895-905.
42.Chen; Yang, L.-M., Arylation of Diarylamines Catalyzed by Ni(II)−PPh3 System. Organic Letters 2005, 7 (11), 2209-2211.
43.Kanai, H.; Ichinosawa, S.; Sato, Y., Effect of aromatic diamines as a cathode interface layer. Synthetic Metals 1997, 91 (1–3), 195-196.
44.Chew, S.; Lee, C. S.; Lee, S.-T.; Wang, P.; He, J.; Li, W.; Pan, J.; Zhang, X.; Kwong, H., Photoluminescence and electroluminescence of a new blue-emitting homoleptic iridium complex. Applied Physics Letters 2006, 88 (9), 093510-1-093510-3.
45.Adachi, C.; Baldo, M. A.; Forrest, S. R.; Thompson, M. E., High-efficiency organic electrophosphorescent devices with tris(2-phenylpyridine)iridium doped into electron-transporting materials. Applied Physics Letters 2000, 77 (6), 904-906.
46.Adachi, C.; Baldo, M. A.; Thompson, M. E.; Forrest, S. R., Nearly 100% internal phosphorescence efficiency in an organic light-emitting device. Journal of Applied Physics 2001, 90 (10), 5048-5051.
47.Leung, M.-k.; Yang, C.-C.; Lee, J.-H.; Tsai, H.-H.; Lin, C.-F.; Huang, C.-Y.; Su, Y. O.; Chiu, C.-F., The Unusual Electrochemical and Photophysical Behavior of 2,2‘-Bis(1,3,4-oxadiazol-2-yl)biphenyls, Effective Electron Transport Hosts for Phosphorescent Organic Light Emitting Diodes. Organic Letters 2006, 9 (2), 235-238.
48.楊萬璽, 含矽的噁唑基團且具有高三重態能階之小分子合成、性質探討及其在藍色磷光有機發光二極體上的應用. 2012.
49.Shih, H. T.; Lin, C. H.; Shih, H. H.; Cheng, C. H., High-Performance Blue Electroluminescent Devices Based on a Biaryl. Advanced Materials 2002, 14 (19), 1409-1412.
50.林坤賜, 聯苯雙偶極咔唑與聯苯氟衍生物之合成、性質探討及其在藍色磷光有機發光二極體之應用. 2014.
51.Kolotuchin, S. V.; Meyers, A. I., Synthesis of 8,8‘-Disubstituted 1,1‘-Binaphthyls Stable to Atropisomerization: 2,2‘-Dimethyl-1,1‘-binaphthalene-8,8‘-diol and 2,2‘-Dimethyl-8,8‘-bis(4-tert-butyloxazolyl)-1,1‘-binaphthyl. The Journal of Organic Chemistry 1999, 64 (21), 7921-7928.
52.謝雨軒, 雙偶極咔唑化合物之合成、性質探討及其在藍色磷光有機發光二極體上的應用. 2013.
53.Jeon, Y.-M.; Lee, I.-H.; Lee, H.-S.; Gong, M.-S., Orange phosphorescent organic light-emitting diodes based on spirobenzofluorene type carbazole derivatives as a host material. Dyes and Pigments 2011, 89 (1), 29-36.
54.Feng, L.; Chen, Z., Light-emitting conjugated molecule containing 1,3,4-oxadiazole, carbazole and naphthalene units. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2006, 63 (1), 15-20.
55.Moseley, J. D.; Gilday, J. P., The mercury-mediated decarboxylation (Pesci reaction) of naphthoic anhydrides investigated by microwave synthesis. Tetrahedron 2006, 62 (19), 4690-4697.
56.Sun, X.; Shan, G.; Sun, Y.; Rao, Y., Regio- and Chemoselective CH Chlorination/Bromination of Electron-Deficient Arenes by Weak Coordination and Study of Relative Directing-Group Abilities. Angewandte Chemie International Edition 2013, 52 (16), 4440-4444.
57.Bailey, R. J.; Card, P.; Shechter, H., Chemistry of 8-substituted 1-naphthylmethylenes and 2-substituted benzylidenes. A simple entry to 1H-cyclobuta[de]naphthalenes. Journal of the American Chemical Society 1983, 105 (19), 6096-6103.
58.Secci, D.; Bolasco, A.; D''Ascenzio, M.; della Sala, F.; Yanez, M.; Carradori, S., Conventional and Microwave-Assisted Synthesis of Benzimidazole Derivatives and Their In Vitro Inhibition of Human Cyclooxygenase. Journal of Heterocyclic Chemistry 2012, 49 (5), 1187-1195.
59.Puerto Galvis, C. E.; Kouznetsov, V. V., An unexpected formation of the novel 7-oxa-2-azabicyclo[2.2.1]hept-5-ene skeleton during the reaction of furfurylamine with maleimides and their bioprospection using a zebrafish embryo model. Organic & Biomolecular Chemistry 2013, 11 (3), 407-411.
60.Hosseini Sarvari, M., ZnO/CH3COCl: A New and Highly Efficient Catalyst for Dehydration of Aldoximes into Nitriles Under Solvent-Free Condition. Synthesis 2005, 2005 (05), 787-790.
61.江祐鱗, 以碳-氮鍵連接之雙偶極含1,2,4-三唑與咔唑化合物之研發及其在藍光磷光有機發光二極體上的應用. 2014.
62.John M. Herbert, P. D. W., and William A. Denny, Formation of peri-Fused Heterocycles by Intramolecular Displacement of Halide. Heterocycles 1987, 26 (4), 1037-1041.
63.Huang, S.-T.; Liaw, D.-J.; Hsieh, L.-G.; Chang, C.-C.; Leung, M.-K.; Wang, K.-L.; Chen, W.-T.; Lee, K.-R.; Lai, J.-Y.; Chan, L.-H.; Chen, C.-T., Synthesis and electroluminescent properties of polyfluorene-based conjugated polymers containing bipolar groups. Journal of Polymer Science Part A: Polymer Chemistry 2009, 47 (22), 6231-6245.
64.Wu, C.-S.; Chen, Y., Copoly(p-phenylene)s containing bipolar triphenylamine and 1,2,4-triazole groups: Synthesis, optoelectronic properties, and applications. Journal of Polymer Science Part A: Polymer Chemistry 2010, 48 (24), 5727-5736.
65.Zoltewicz, J. A.; Maier, N. M.; Lavieri, S.; Ghiviriga, I.; Abboud, K. A.; Fabian, W. M. F., Diastereomers of a cofacial ternaphthalene and two azaternaphthalenes. Syntheses and barriers to isomerization. Tetrahedron 1997, 53 (15), 5379-5388.
66.Sarkar, A.; Chakravorti, S., A solvent-dependent luminescence study on 9-phenyl carbazole. Journal of Luminescence 1998, 78 (3), 205-211.
67.Adachi, C.; Kwong, R. C.; Djurovich, P.; Adamovich, V.; Baldo, M. A.; Thompson, M. E.; Forrest, S. R., Endothermic energy transfer: A mechanism for generating very efficient high-energy phosphorescent emission in organic materials. Applied Physics Letters 2001, 79 (13), 2082-2084.
68.Holmes, R. J.; Forrest, S. R.; Tung, Y.-J.; Kwong, R. C.; Brown, J. J.; Garon, S.; Thompson, M. E., Blue organic electrophosphorescence using exothermic host–guest energy transfer. Applied Physics Letters 2003, 82 (15), 2422-2424.
69.Baldo, M. A.; Lamansky, S.; Burrows, P. E.; Thompson, M. E.; Forrest, S. R., Very high-efficiency green organic light-emitting devices based on electrophosphorescence. Applied Physics Letters 1999, 75 (1), 4-6.
70.Chen, F.-C.; Chang, S.-C.; He, G.; Pyo, S.; Yang, Y.; Kurotaki, M.; Kido, J., Energy transfer and triplet exciton confinement in polymeric electrophosphorescent devices. Journal of Polymer Science Part B: Polymer Physics 2003, 41 (21), 2681-2690.
71.Reichardt, C., Solvatochromic Dyes as Solvent Polarity Indicators. Chemical Reviews 1994, 94 (8), 2319-2358.
72.Nadaf, Y. F.; Mulimani, B. G.; Gopal, M.; Inamdar, S. R., Ground and excited state dipole moments of some exalite UV laser dyes from solvatochromic method using solvent polarity parameters. Journal of Molecular Structure: THEOCHEM 2004, 678 (1–3), 177-181.
73.Williams, A. T. R.; Winfield, S. A.; Miller, J. N., Relative fluorescence quantum yields using a computer-controlled luminescence spectrometer. Analyst 1983, 108 (1290), 1067-1071.
74.Somerall, A. C.; Guillet, J. E., Triplet-Triplet Annihilation and Excimer Fluorescence in Poly(naphthyl methacrylate). Macromolecules 1973, 6 (2), 218-223.
75.Pommerehne, J.; Vestweber, H.; Guss, W.; Mahrt, R. F.; Bassler, H.; Porsch, M.; Daub, J., Efficient two layer leds on a polymer blend basis. Advanced Materials 1995, 7 (6), 551-554.
76.Liang, Y.; Feng, D.; Wu, Y.; Tsai, S.-T.; Li, G.; Ray, C.; Yu, L., Highly Efficient Solar Cell Polymers Developed via Fine-Tuning of Structural and Electronic Properties. Journal of the American Chemical Society 2009, 131 (22), 7792-7799.
77.Dougherty, E. V. A. D. A., Modern Physical Organic Chemistry illustrated edition ed.; University Science: Sausalito, California, 2005.
78.He, J.; Liu, H.; Dai, Y.; Ou, X.; Wang, J.; Tao, S.; Zhang, X.; Wang, P.; Ma, D., Nonconjugated Carbazoles: A Series of Novel Host Materials for Highly Efficient Blue Electrophosphorescent OLEDs. The Journal of Physical Chemistry C 2009, 113 (16), 6761-6767.
79.Park, J. S.; Yu, J. H.; Jeon, W. S.; Son, Y. H.; Kulshreshtha, C.; Kwon, J. H., Two-color-mixed white organic light-emitting diodes with a high color temperature. Journal of Information Display 2011, 12 (1), 51-55.
80.Rule, H. G.; Barnett, A. J. G., 23. Reactivity of peri-substituted naphthalenes. Part I. Displacement of the nitro-group in 8-nitro-1-naphthoic acid by thionyl halides to form 8-chloro- and 8-bromo-naphthoic acids. Journal of the Chemical Society (Resumed) 1932, (0), 175-179.
81.Korolev, D. N.; Bumagin, N. A., Pd–EDTA as an efficient catalyst for Suzuki–Miyaura reactions in water. Tetrahedron Letters 2005, 46 (34), 5751-5754.
82.Quesnel, J. S.; Arndtsen, B. A., A Palladium-Catalyzed Carbonylation Approach to Acid Chloride Synthesis. Journal of the American Chemical Society 2013, 135 (45), 16841-16844.
83.Noland, W. E.; Srinivasarao Narina, V.; Britton, D., Synthesis and crystallography of 8-halonaphthalene-1-carbonitriles and naphthalene-1,8-dicarbonitrile. Journal of Chemical Research 2011, 35 (12), 694-697.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 喹喔啉/二苯基笏及順式二苯乙烯/笏之雙重鄰位混成系統在光電材料上的應用
2. 含Carbazole芴衍生物的合成、鑑定與電致發光元件電洞傳輸層之應用
3. 有機電激發光元件之具電荷傳輸片段分子發光體
4. 3,6雙取代咔唑與二聚茚噻吩分子的合成及光電應用
5. 以新型雙極性主體材料應用在有機發光元件
6. 便宜而有效合成吲哚類雜環化合物方法之研究
7. I.電子效應在控制高價碘(III)試劑誘導N-(聯苯)吡啶-2-胺之分子內碳─氮環化反應的選擇性研究II.利用二價鈀金屬經由碳─氫鍵活化方式催化3,5-二苯基异唑之鄰位芳醯基化反應研究
8. 含咔唑及吡咯雙極子磷光主體材料的開發
9. 雙偶極咔唑化合物之合成、性質探討及其在藍色磷光有機發光二極體上的應用
10. 高扭曲雙極性主體材料在磷光有機發光元件上之應用
11. 利用高價碘(III)經由碳—氫鍵活化/碳—氮鍵生成誘導N-(聯苯-2-基)吡啶-2-胺之分子內環化反應:電子效應之影響
12. 主鏈含咔唑及1,2,4-三氮唑雙極性基團高分子之磷光主發光體材料的合成與鑑定
13. 含矽的噁唑基團且具有高三重態能階之小分子合成、性質探討及其在藍色磷光有機發光二極體上的應用
14. 利用碘化銅催化碳-氧鍵耦合反應於樹枝狀氮-苯基咔唑衍生物之合成、性質探討及其在電致磷光發光二極體上的應用
15. 高分子側鏈含咔唑和噁唑之合成及其於發光二極體之應用
 
無相關期刊