1. 胡啟章:電化學原理和方法 五南圖書出版公司出版
2. Electropaedia,” http://www.mpoweruk.com/performance.htm
3. Simon, P., and Y. Gogotsi. "Materials for Electrochemical Capacitors." Nature materials 7, no. 11 (2008): 845-854.
4. Armand, M., F. Endres, D. R. MacFarlane, H. Ohno, and B. Scrosati. "Ionic-Liquid Materials for the Electrochemical Challenges of the Future."
Nature materials 8, no. 8 (2009): 621-629.
5. Carlin, R. T., H. C. De Long, J. Fuller, W. J. Lauderdale, T. Naughton, P. C. Trulove, and C. S. Bahn. "Dual Intercalating Molten Electrolyte Batteries." 393, 201-206, 1995
6. Hardwick, L. J., M. Hahn, P. Ruch, M. Holzapfel, W. Scheifele, H. Buqa, F. Krumeich, P. Novak, and R. Kotz. "An in Situ Raman Study of the Intercalation of Supercapacitor-Type Electrolyte into Microcrystalline Graphite." Electrochimica Acta 52, no. 2 (2006): 675-680.
7. Hardwick, L. J., P. W. Ruch, M. Hahn, W. Scheifele, R. Kotz, and P. Novak. "In Situ Raman Spectroscopy of Insertion Electrodes for Lithium-Ion Batteries and Supercapacitors: First Cycle Effects." Journal of Physics and Chemistry of Solids 69, no. 5-6 (2008): 1232-1237.
8. Zhao, Xin, Beatriz Mendoza Sanchez, Peter J. Dobson, and Patrick S. Grant. "The Role of Nanomaterials in Redox-Based Supercapacitors for Next Generation Energy Storage Devices." Nanoscale 3, no. 3 (2011): 839-855.
9. Zhang, Li Li, and X. S. Zhao. "Carbon-Based Materials as Supercapacitor Electrodes." Chemical Society Reviews 38, no. 9 (2009): 2520-2531
10. Arbizzani, Catia, Maurizio Biso, Dario Cericola, Mariachiara Lazzari, Francesca Soavi, and Marina Mastragostino. "Safe, High-Energy Supercapacitors Based on Solvent-Free Ionic Liquid Electrolytes." Journal of Power Sources 185, no. 2 (2008): 1575-1579
11. Helical microtubules of graphitic carbon Nature, Vol. 354 (November 1991), pp. 56-58 by S. Iijima
12. Chen, Qiao-Ling, Kuan-Hong Xue, Wei Shen, Fei-Fei Tao, Shou-Yin Yin, and Wen Xu. "Fabrication and Electrochemical Properties of Carbon Nanotube Array Electrode for Supercapacitors." Electrochimica Acta 49, no. 24 (2004): 4157-4161
13. C. Niu, Sichel, E.K., Hoch, R., Moy, D., Tennent, H. "High Power Electrochemical Capacitors Based on Carbon Nanotube Electrodes." Applied Physics Letters 70, (1997): 1480-1482.
14. An, K.H., Kim, W.S., Park, Y.S., Moon, J.-M., Bae, D.J., Lim, S.C., Lee, Y.S., . "Electrochemical Properties of High-Power Supercapacitors Using Single-Walled Carbon Nanotube Electrodes." Advanced Funtional Materials 11, no. 5 (2001): 387-392
15. 陳金銘:高容量碳粉材料.工業材料雜誌 100:57,199716. Maldonado, Stephen, Stephen Morin, and Keith J. Stevenson. "Structure, Composition, and Chemical Reactivity of Carbon Nanotubes by Selective Nitrogen Doping." Carbon 44, no. 8 (2006): 1429-1437.
17. Shi, H., J. Barker, M. Y. Saidi, R. Koksbang, and L. Morris. "Graphite Structure and Lithium Intercalation." Journal of Power Sources 68, no. 2 (1997): 291-295.
18. Chemical engineering(The Taiwan I. Ch. E.)Vol. 58, No.3 JUN. 2011.
19. 李汝雄 編著 綠色溶劑-離子液體的合成與應用 化學工業出版社
20. Seddon, Kenneth R. "Ionic Liquids for Clean Technology." Journal of Chemical Technology & Biotechnology 68, no. 4 (1997): 351-356.
21. Barrosse-Antle, L. E, A. M Bond, R. G Compton, A. M O'Mahony, E. I Rogers, and D. S Silvester. "Voltammetry in Room Temperature Ionic Liquids: Comparisons and Contrasts with Conventional Electrochemical Solvents." Chemistry – An Asian Journal 5, no. 2 (2010): 202-230.
22. Greaves, Tamar L., Asoka Weerawardena, Celesta Fong, Irena Krodkiewska, and Calum J. Drummond. "Protic Ionic Liquids: Solvents with Tunable Phase Behavior and Physicochemical Properties." The Journal of Physical Chemistry B 110, no. 45 (2006): 22479-22487.
23. Holzapfel, M., C. Jost, A. Prodi-Schwab, F. Krumeich, A. Wursig, H. Buqa, and P. Novak. "Stabilisation of Lithiated Graphite in an Electrolyte Based on Ionic Liquids: An Electrochemical and Scanning Electron Microscopy Study." Carbon 43, no. 7 (2005): 1488-1498
24. Chemical engineering(The Taiwan I. Ch. E.)Vol. 58, No.5 OCT. 2011
25. Edited by Scott Handy, Middle Tennessee State University, USA, ISBN 978-953-307-605-8, Hard cover, 516 pages, Publisher: InTech, Chapters published September 22, 2011 under CC BY-NC-SA 3.0 license DOI: 10.5772/1769
26. Khomenko, V., E. Raymundo-Pinero, and F. Beguin. "High-Energy Density Graphite/Ac Capacitor in Organic Electrolyte." Journal of Power Sources 177, no. 2 (2008): 643-651.
27. Zheng, Honghe, Kai Jiang, Takeshi Abe, and Zempachi Ogumi. "Electrochemical Intercalation of Lithium into a Natural Graphite Anode in Quaternary Ammonium-Based Ionic Liquid Electrolytes." Carbon 44, no. 2 (2006): 203-210.
28. Aida, T., K. Yamada, and M. Morita. "An Advanced Hybrid Electrochemical Capacitor That Uses a Wide Potential Range at the Positive Electrode." Electrochemical and Solid-State Letters 9, no. 12 (2006): 534-536.
29. Aida, T., I. Murayama, K. Yamada, and M. Morita. "Analyses of Capacity Loss and Improvement of Cycle Performance for a High-Voltage Hybrid Electrochemical Capacitor." Journal of The Electrochemical Society 154, no. 8 (2007): A798-A804.
30. Ishihara, T., M. Koga, H. Matsumoto, and M. Yoshio. "Electrochemical Intercalation of Hexafluorophosphate Anion into Various Carbons for Cathode of Dual-Carbon Rechargeable Battery." Electrochemical and Solid-State Letters 10, no. 3 (2007): A74-A76.
31. Wei, Di, Pritesh Hiralal, Haolan Wang, Husnu Emrah Unalan, Markku Rouvala, Ioannis Alexandrou, Piers Andrew, Tapani Ryhanen, and Gehan A. J. Amaratunga. "Hierarchically Structured Nanocarbon Electrodes for Flexible Solid Lithium Batteries." Nano Energy, no. 0.
32. Placke, Tobias, Olga Fromm, Simon Franz Lux, Peter Bieker, Sergej Rothermel, Hinrich-Wilhelm Meyer, Stefano Passerini, and Martin Winter. "Reversible Intercalation of Bis (Trifluoromethanesulfonyl) Imide Anions from an Ionic Liquid Electrolyte into Graphite for High Performance Dual-Ion Cells." Journal of The Electrochemical Society 159, no. 11 (2012): A1755-A1765
33. Lu, Wen, Liangti Qu, Kent Henry, and Liming Dai. "High Performance Electrochemical Capacitors from Aligned Carbon Nanotube Electrodes and Ionic Liquid Electrolytes." Journal of Power Sources 189, no. 2 (2009): 1270-1277
34. Balducci, Andrea, Wesley A. Henderson, Marina Mastragostino, Stefano Passerini, Patrice Simon, and Francesca Soavi. "Cycling Stability of a Hybrid Activated Carbon//Poly(3-Methylthiophene) Supercapacitor with N-Butyl-N-Methylpyrrolidinium Bis(Trifluoromethanesulfonyl)Imide Ionic Liquid as Electrolyte." Electrochimica Acta 50, no. 11 (2005): 2233-2237
35. Lazzari, M., F. Soavi, and M. Mastragostino. "High Voltage, Asymmetric Edlcs Based on Xerogel Carbon and Hydrophobic Il Electrolytes." Journal of Power Sources 178, no. 1 (2008): 490-496.
36. Balducci, A., R. Dugas, P. L. Taberna, P. Simon, D. Plee, M. Mastragostino, and S. Passerini. "High Temperature Carbon–Carbon Supercapacitor Using Ionic Liquid as Electrolyte." Journal of Power Sources 165, no. 2 (2007): 922-927.
37. Mastragostino, M., and F. Soavi. "Capacitors | Electrochemical Capacitors: Ionic Liquid Electrolytes." In Encyclopedia of Electrochemical Power Sources, edited by Garche Editor-in-Chief: Jurgen, 649-657. Amsterdam: Elsevier, 2009.
38. Balducci, Andrea, Ugo Bardi, Stefano Caporali, Marina Mastragostino, and Francesca Soavi. "Ionic Liquids for Hybrid Supercapacitors." Electrochemistry Communications 6, no. 6 (2004): 566-570.
39. El-Kady, M. F., and R. B. Kaner. "Scalable Fabrication of High-Power Graphene Micro-Supercapacitors for Flexible and on-Chip Energy Storage." Nature Communications 4, (2013).
40. Kang, Y. J., H. Chung, C. H. Han, and W. Kim. "All-Solid-State Flexible Supercapacitors Based on Papers Coated with Carbon Nanotubes and Ionic-Liquid-Based Gel Electrolytes." Nanotechnology 23, no. 6 (2012).
41. Kim, B., H. Chung, and W. Kim. "High-Performance Supercapacitors Based on Vertically Aligned Carbon Nanotubes and Nonaqueous Electrolytes." Nanotechnology 23, no. 15 (2012).
42. Seel, J. A., and J. R. Dahn. "Electrochemical Intercalation of Pf6 into Graphite." Journal of The Electrochemical Society 147, no. 3 (2000): 892-898.
43. Hahn, M., O. Barbieri, F. P. Campana, R. Kotz, and R. Gallay. "Carbon Based Double Layer Capacitors with Aprotic Electrolyte Solutions: The Possible Role of Intercalation/Insertion Processes." Applied Physics A 82, no. 4 (2006): 633-638.
44. Smart, L.E., and E.A. Moore. Solid State Chemistry: An Introduction, Third Edition: Taylor & Francis, 2005. p296
45. Scott Handy, Middle Tennessee State University, USA "Applications of Ionic Liquids in Science and Technology", ISBN 978-953-307-605-8, Published: September 22, 2011 under CC BY-NC-SA 3.0 license
46. Mitani, Satoshi, Marappan Sathish, Dinesh Rangappa, Atsushi Unemoto, Takaaki Tomai, and Itaru Honma. "Nanographene Derived from Carbon Nanofiber and Its Application to Electric Double-Layer Capacitors." Electrochimica Acta 68, no. 0 (2012): 146-152.
47. Tamailarasan, P. and S. Ramaprabhu, Carbon Nanotubes-Graphene-Solidlike Ionic Liquid Layer-Based Hybrid Electrode Material for High Performance Supercapacitor. The Journal of Physical Chemistry C, 2012. 116(27): p. 14179-14187.
48. Herstedt, M., M. Smirnov, et al. (2005). "Spectroscopic characterization of the conformational states of the bis(trifluoromethanesulfonyl)imide anion (TFSI−)." Journal of Raman Spectroscopy 36(8): 762-770.
49. Rey, I., P. Johansson, et al. (1998). "Spectroscopic and Theoretical Study of (CF3SO2)2N- (TFSI-) and (CF3SO2)2NH (HTFSI)." The Journal of Physical Chemistry A 102(19): 3249-3258.
50. Mihkel Koel , Tallinn University of Technology, Tallinn, Estonia Professor Emeritus, Duke University, Durham, NC, USA, "Ionic Liquids in Chemical Analysis", October 9, 2008, ISBN-10: 1420046462, ISBN-13: 978-1420046465
51. Endo, M., T. Hayashi, et al. (2001). "Scanning tunneling microscope study of boron-doped highly oriented pyrolytic graphite." Journal of Applied Physics 90(11): 5670-5674.
52. 成會明 編著 張勁燕 校訂 "奈米碳管 Catbon nanotube" 五南圖書出版公司 印行