|
[1]D. Beeferman and A. Berger. Agglomerative clustering of a search engine query log. In Proceedings of ACMSIGKDD ’00, 2000 [2]D. R. Cutting, D. R. Karger, and J. O. Pederson. Constant Interaction-Time Scatter/Gather Browsing of Very Large Document Collections. In Proceedings of the 16th Annual International ACM/SIGIR Conference on Research and Development in Information Retrieval (SIGIR'93), pages 125-135, Pittsburgh, PA, 1993. [3]C. C. Chang, C. J. Lin, LIBSVM: A library for sup- port vector machines, 2001, Software available at http:// www.csie.ntu.edu.tw/?cjlin/papers/libsvm.ps.gz [4]N. Eiron and K.S. McCurley. Analysis of anchor text for Web search. In Proceedings of ACM SIGIR ’03,2003. [5]M. A. Hearst, J. O. Pedersen. Reexamining the Cluster Hypothesis: Scatter/Gather on Retrieval Results. In Proceedings of the 19th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR'96), Zurich, June 1996. [6]I. Kang and G. Kim. Query type classification for web document retrieval. In Proceedings of ACM SIGIR’03, 2003. [7]R. Kraft and J. Zien. Mining anchor text for query refinement. In Proceedings of the Thirteenth Int’l.World Wide Web Conf., 2004. [8]D. Lawrie, W. B. Croft. Finding Topic Words for Hierarchical Summarization. In Proceedings of the 24th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR'01), pages 349-357, 2001. [9]B. Lent, R. Agrawal, R. Srikant. Discovering Trends in Text Databases. In Proceedings of the 3rd Int'l Conference on Knowledge Discovery in Databases and Data Mining (KDD'97), Newport Beach, California, August 1997. [10]A. V. Leouski. W. B. Croft. An Evaluation of Techniques for Clustering Search Results. Technical Report IR-76, Department of Computer Science, University of Massachusetts, Amherst, 1996. [11]A. Leuski and J. Allan. Improving Interactive Retrieval by Combining Ranked List and Clustering. In Proceedings of RIAO, College de France, pp. 665-681, 2000. [12]B. Liu, C. W. Chin, and H. T. Ng. Mining Topic-Specific Concepts and Definitions on the Web. In Proceedings of the Twelfth International World Wide Web Conference (WWW'03), Budapest, Hungary, 2003. [13]U. Lee , Z. Liu , J.H. Cho, Automatic identification of user goals in Web search, Proceedings of the 14th international conference on World Wide Web, May 10-14, 2005, Chiba, Japan [14]D. E. Rose and D. Levinson. Understanding user goals in Web search. In Proceedings of the Thirteenth Int’l.World Wide Web Conf., 2004. [15]C. Silverstein, M. Henzinger, H. Marais, and M. Moricz. Analysis of a very large Web search engine query log. SIGIR Forum, 33(1):6 – 12, 1999. [16]H. J. Zheng, Q. C. He, Z. Chen, W. Y. Ma, J. Ma. Learning to cluster Web search results. In Proceedings of SIGIR ’04, pages 210–217, 2004. [17]O. Zamir, O. Etzioni. Web Document Clustering: A Feasibility Demonstration, In Proceedings of the 19th International ACM SIGIR Conference on Research and Development of Information Retrieval (SIGIR'98), 46-54, 1998. [18]O. Zamir, O. Etzioni. Grouper: A Dynamic Clustering Interface to Web Search Results. In Proceedings of the Eighth International World Wide Web Conference (WWW8), Toronto, Canada, May 1999. [19]Google, http://www.google.com [20]Yahoo, http://tw.yahoo.com [21]Vivisimo, http://vivisimo.com [22]MSN search, http://www.msn.com.tw
|