跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.23) 您好!臺灣時間:2025/10/27 05:45
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:張志榜
研究生(外文):Chih-Pang Chang
論文名稱:低溫複晶矽薄膜電晶體結晶技術之研究
論文名稱(外文):Investigation of Crystallization Technique for Low-Temperature-Processed Poly-Silicon Thin-Film-Transistor
學位類別:碩士
校院名稱:國立虎尾科技大學
系所名稱:光電與材料科技研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:英文
論文頁數:91
相關次數:
  • 被引用被引用:0
  • 點閱點閱:83
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
利用複晶矽薄膜電晶體製作畫素元件及周邊驅動電路已成為發展主動式平面顯示器的重要技術。本論文的研究在於針對現有低溫複晶矽的結晶方法提出改善以及提出新穎的結晶技術,以進ㄧ步達成面板整結合化之目的。
首先,吾人提出有別於傳統準分子雷射結晶技術的固態連續波雷射橫向再結晶技術,固態連續波雷射具有高穩定的特性且相較於準分子雷射具有可靠、耐用、價廉且維護成本低的優點,在此我們利用不同的掃描速度與雷射能量,分析出在不同條件下的橫向結晶狀態與其成長機制,並且成功的成長出大於10 μm的晶粒大小,相較於準分子雷射結晶與循序性側向結晶,固態連續波雷射不需額外的步驟即可達成大晶粒成長。
另外,有鑒於固相結晶法雖可獲得不錯的均勻度,但需要一相當長的結晶退火時間,因此,在這吾人提出於固相結晶之前加入氨電漿短時間的處理來縮短固相結晶的時間,在本實驗中,我們成功的利用氨電漿的處理縮短了固相結晶的時間,只需要兩小時退火時間即可得到比單純利用固相結晶15小時的退火時間來得好的特性,驗證了氨電漿的處理確實可改善固相結晶法的結晶時間。
The use of low-temperature processed polycrystalline silicon thin-film transistors (LTP poly-Si TFTs) as pixel active elements and in peripheral driver circuits has been an important issue in the development of active-matrix flat panel displays (AMFPDs). This thesis studies a number of crystallization techniques for the high performance LTP poly-Si TFTs to achieve system on panel.
Firstly, we propose solid-state continue-wave laser (CW-laser) to crystallized poly-Si films, the distinction of excimer laser, CW-laser possessed high stability, reliability, durable and low-cost. In this way, we used laser scanning speed and energy to analysis a status of grain lateral growth and crystallizes mechanism for various condition, furthermore, we succeed to crystallize great grain size more than 10 μm. To compare excimer laser crystallization (ELC) and Sequential lateral solidification (SLS), CW-laser don’t needed extra procedure to carrier out large grain size.
On the other hand, solid-phase crystallization (SPC) had better uniformity but require to long annealing time to crystallized;Therefore, we suggested NH3 plasma treatment at server times before crystallized to shorten crystallization times, in this experiment, we have accomplished shorten crystallization times for NH3 plasma treatment, the novel crystallization method to compared the conventional process (SPC 15 hours) just require 2 hours for SPC to demonstrate NH3 plasma treatment efficiently shorten SPC annealing times and improvement electrical characteristics.
Contents
Abstract (in Chinese)……………………………………………………………….……..……I
Abstract (in English)…………………………………………………………………..….…III
Contents………………………………………………………………………………………V
Table Captions…....…………………………..……………………………………………..VIII
Figure Captions…………….…………………...…………………………………………….XI

Chapter 1. Introduction
1.1. Overview of poly-silicon thin-film transistors……………...…….………….…...1
1.2. Defect in poly-Si film…………………………………………………………….3
1.2. Background and Motivation………………………………………….…………...4
1.3. Thesis outline……………………………………………………….…………….9

Chapter 2. Experiment
2.1. Solid-State Continue-Wave Laser Crystallization……………………………..….10
2.2. NH3-plasma treatment…………………………………………………………..11
2.3. Low-temperature process poly-silicon thin-film transistors fabrication procedure.11
2.3.1. Low Pressure Chemical Vapor Deposition (LPCVD)…………………….11
2.3.2. Inductively Coupled Plasma Chemical Vapor Deposition (ICP-CVD)…..12
2.3.3. Excimer Laser Activation………………………………………………..12
2.4. Device parameter extraction…………………………………………..…………15
2.4.1. Determination of threshold voltage (Vth)…......................................................15
2.4.2. Determination of subthreshold swing (SS)……………………...……………16
2.4.3. Determination of field effect mobility (μFE)………………….…..………….17
2.4.4. Determination of ON and OFF current…………………….…………………18

Chapter 3. Crystallizes mechanisms for solid-state continue-wave laser
3.1. Material analysis………………..………..………………………………………28
3.2. Summary…………………………………………………………………………29

Chapter 4. NH3 plasma treatment of SPC poly-Si TFTs
4.1. Electrical characteristics SPC poly-Si TFTs with and without NH3-plasma treatment………………………………………………………………………………...49
4.2. Summary………..…………………….,……..…………………………………..51

Chapter 5. Conclusions and Future work
5.1. Conclusions……………………………………………………………………….69
5.2. Future work…………………………..…………………………………………...70

References…………………………………………………………………………………71
[1] H. Oshima and S. Morozumi, IEDM Tech. Dig., p. 157 (1989)
[2] M. Stewart, R. S. Howell, L. Pires, and M. K. Hatalis, IEEE Trans. Electron Devices, 48, p. 845 (2001)
[3] H. Kuriyama et al., Symp. On VLSI Tech., p. 38 (1992)
[4] T. Yamanaka, T. Hashimoto, N. Hasegawa, T. Tanala, N. Hashimoto, A. Shimizu, N. Ohki, K. Ishibashi, K. Sasaki, T. Nishida, T. Mine, E. Takeda, and T. Nagano, IEEE Trans. Electron Devices, 42, p. 1305 (1995).
[5] K. Yoshizaki, H. Takaashi, Y. Kamigaki, T.asui, K. Komori, and H. Katto, ISSCC Digest of Tech., p. 166 (1985)
[6] N.Yamauchi, U. Inava, and M. Okamura, IEEE Photonic Tech. Lett, 5, p. 319 (1993)
[7] N. Yamauchi, J.-J. J. Hajjar and R. Reif, IEEE Trans. Electron Devices, 38, p. 55 (1991)
[8] S. Jagar, M. Chan, M. C. Poon, H. Wang, M. Qin, P. K. Ko, Y. Wang, IEDM Tech. Dig., p. 293 (1999).
[9] T. Unagami, T. Takeshita, IEEE Trans. Electron Devices., 36, 529 (1989).
[10] K. R. Olasupo and M. K. Hatalis, IEEE Trans. Electron Devices., 43, p.1218 (1996).
[11] S. Seki, O. Kogure, and B. Tsujiyama, IEEE Electron Device Lett., 8, 434 (1987).
[12] K. Tanaka, H. Arai, and S. Kohda, IEEE Electron Device Lett., 9,23 (1988).
[13] K. Y. Choi, J. W. Lee, and M.-K. Han, IEEE Trans. Electron Devices., 45, 1272 (1998).
[14] T. I. Kamins and P. J. Marcoux, IEEE Electron Device Lett., 1, p. 159 (1980).
[15] I. W. Wu, T. Y. Huang, W. B. Jackson, A. G. Lewis, and A. Chiang, IEEE Electron Device Lett., 12, p. 181 (1991).
[16] J. Y. Lee, C. H. Han, and C. K. Kim, Appl. Phys. Lett., 67, p. 1880 (1995).
[17] H. C. Cheng, F. S. Wang, and C. Y. Huang, IEEE Trans. Electron Devices., 44, p. 64 (1997).
[18] F. S. Wang, M. J. Tsai, and H. C. Cheng, IEEE Electron Device Lett., 16, 503 (1995).
[19] C. H. Kim, J. H. Jeon, J. S. Yoo, K. C. Park, and M. K. Han, Jan. J. Appl. Phys., 38, p. 2247 (1999).
[20] K. W. Kim, K. S. Cho, J. I. Ryu, K. H. Yoo, and J. Jang, IEEE Electron Device Lett., 21, p. 301 (2000).
[21] M. K. Hatails and D. W. Greve, IEEE Electron Devices Lett., 8, p. 361 (1987)
[22] F. Emoto, K. Senda, E. Fujii, A. Nakamura, A. Yamamoto, Y. Uemoto, and G. Kano, IEEE Trans. Electron Devices., 37, p. 1462 (1990).
[23] K. Shimizu, O. Sugiura, and M. Matsumura, IEEE Trans. Electron Devices., 40, p. 112 (1993).
[24] Ichirou Asai, Noriji Kato, Mario Fuse and Toshihisa Hamano, Jan. J. Appl. Phys., 32, p. 474 (1993).
[25] C. Hayzelden and J. L. Batstone, J. Appl. Phys., 73, p. 8279 (1993).
[26] S. W. Lee, T. H. Ihn, and S. K. Joo, IEEE Electron Devices Lett., 17, p. 407 (1996).
[27] M. Bonnel, N.Duhamel, L. Haji, B. Loisel, and J. Stoemenos, IEEE Electron Devices Lett., 14, p. 551 (1993).
[28] K. Park, S. Batra, S. Banerjee, G. Lux, and R. Manukonda, Mat. Res. Soc. Symp. Pric., 182, p. 141 (1990).
[29] S. Batra, K. Park, S. Banerjee, D. Kwong, A. Tasch, M. Rodder, and R. Sundaresan, IEEE Electron Devices Lett., 11, p.194 (1990).
[30] P. Baeri and E. Rimini, Mat. Chem. and Phys., 46, p. 169 (1996).
[31] S. R. Stiffler, M. O. Thomson, and P. S. Peercy, Phys. Rev. Lett., 60, p. 2519 (1988).
[32] T. Sameshima and S. Usui, J. Appl. Phys., 70, p. 1281 (1991).
[33] G. K. Giust and T. W. Sigmon, Appl. Phys. Lett., 70, p. 767 (1997).
[34] J. S. Im and H. J. Kim, Appl. Phys. Lett., 64, p. 2303 (1994).
[35] H. J. Kim and J. S. Im, Mat. Res. Soc. Symp. Proc., 321,p. 665 (1994).
[36] J. S. Im, H. J. Kim, and M. O. Thompson, Appl. Phys. Lett., 63, p. 1969 (1993).
[37] L. Fonseca and F. Campabadal, IEEE Electron Devices Lett., 15, p. 449 (1994).
[38] A. C. Adams, Solid State Technol., 26, p.135 (1983).
[39] C. H. Tseng, T. K. Chang, F. T. Chu, J. M. Shieh, B. T. Dai, and H. C. Cheng, IEEE Electron Devices Lett., 23, p. 333 (2002).
[40] J. W. Lee, N. I. Lee, S. H. Hur, and C. H. Han, J. Electrochem. Soc., 144, p. 3283 (1997).
[41] K. P. Cheung and C. S. Pai, IEEE Electron Devices Lett., 16, p. 220 (1995).
[42] X. Zheng et al., IEEE Electron Devices Lett., 18, p. 39 (1997).
[43] M. Bhat et al., IEEE Electron Devices Lett., 15, p. 421 (1994).
[44] G. D. Wilk et al., J. Appl. Phys., 87, p. 484 (2000).
[45] S.M Sze, “Semiconductor devices physics and technology,”second edition, p.199.
[46] D. Z. Peng, T. C. Chang, C. Y. Chang, M. L. Tsai, C. H. Tu, and P. T. Liu, J. Appl. Phys., 93, p. 1926 (2003).
[47] S. C. Sun and J. D. Plummer, IEEE Trans. Electron Devices, 27, p. 1497 (1980).
[48] R. V. Booth, M. H. White, H. S. Wong, and T. J. Krutsick, IEEE Trans. Electron Devices, 34, p. 2501 (1987).
[49] D. K. Schrider, “Semiconductor Material and Device Characterization”, Wiley-Interscience, (1998).
[50] T. Mizuki, J.S. Matsuda, Y. Nakamura, J. Takagi and T. Yoshida, IEEE Trans. Electron Devices, 51, p. 204 (2004).
[51] M. Kimura, R. Nozawa, S. Inoue, T. Shimoda, B.O.K. Lui, S.W.B. Tam and P. Migliorato, Jan. J. Appl. Phys., 40, p. 5227 (2001).
[52] H. Ikeda, J. Appl. Phys., 91, p. 4637 (2002).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top