跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.176) 您好!臺灣時間:2025/09/08 18:30
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:方建智
研究生(外文):Jian-Jhih Fang
論文名稱:研究有機太陽能電池在熱退火下的界面奈米結構變化之影響因素
論文名稱(外文):Study the factors related to the changes of interfacial nanostructures under annealing process in organic solar cells
指導教授:陳美杏陳美杏引用關係
指導教授(外文):Mei-Hsin Chen
學位類別:碩士
校院名稱:國立東華大學
系所名稱:光電工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
論文頁數:69
中文關鍵詞:有機太陽能電池退火製程原子力顯微鏡表面形貌奈米壓痕
外文關鍵詞:Organic solar cellsAnnealing processSurface morphologyNanoindentationP3HTPCBM
相關次數:
  • 被引用被引用:0
  • 點閱點閱:379
  • 評分評分:
  • 下載下載:20
  • 收藏至我的研究室書目清單書目收藏:0
本研究主要可分為三部分:1.製作ITO/PEDOT:PSS/P3HT:PCBM/Al結構有機太陽能電池,2.進行元件各層表面分析,3.研究後退火製程較前退火製程表面平均粗糙度大的主因。
  製作有機太陽能電池可分為前退火製程與後退火製程,其製作太陽能電池條件皆經過優化,而前、後退火製程差異只是在蒸鍍鋁陰極與熱退火的時機差別。其實驗結果前、後退火製程光的電轉換效率分別為為1.72%和3.24%。
  利用AFM(Atomic Force Microscope)原子力顯微鏡分別觀察各層材料:ITO、PEDOT:PSS、主動層材料、鋁電極經過不同時機熱退火處理、鹽酸蝕刻、有無熱退火…等變因的表面形貌變化。而後退火製程主動層表面粗糙度遠大於前退火製程。最後觀察出材料鋁的表面粗糙度在受到熱退火處理會與底部材料的機械特性有當大的關聯。
  最後利用奈米壓痕分析鋁與有機主動層材料機械特性,鋁在楊氏係數與硬度皆大於主動層材料,並且鋁陰極在有機薄膜上經過後退火過程會對主動層有強烈的影響,鋁陰極的壓縮應力對於後退火的主動層形貌變化有主導地位。

This study have three mainly parts: 1. Fabrication processes of ITO / PEDOT:PSS / P3HT:PCBM / Al structure of organic solar cells, 2. Analyze surface morphology of different layer of solar cell, 3. Study the factors with different morphologies of active layer under pre-annealing and post-annealing process, respectively.
  Manufacture of organic solar cells can be divided into pre-annealing process and post-annealing process, and the production of solar cell conditions are optimized. The difference of pre-annealing and post-annealing process is only in the timing between evaporating aluminum electrodes and annealing. The experimental results reveal the power conversion efficiency (PCE) of organic solar cells with the pre-annealing and post-annealing process conditions are 1.72% and 3.24 %, respectively.
  Using the AFM (Atomic Force Microscope) to observe the morphology changes of each layer: ITO, PEDOT:PSS, the active layer materials, aluminum electrodes, hydrochloric acid etching, with or without thermal annealing. The surface roughness of post-annealing process is much larger than that of pre-annealing process. Finally, observing the surface roughness of the aluminum with thermal annealing process has great relationship with the mechanical properties of the bottom layer.
  Finally, comparing with the experimental results obtained from the technique of nanoindenter, the values of Young’s modulus from Al layer is more than one order from that of the active layer. The thin layer of Al caps on the soft organic film using post-annealing process has a strong influence on the morphology of the active layer. The compressive stress of Al is the critical factor that dominates the morphology changes of the active layer.

目錄
致謝 I
Abstract II
摘要 III
圖目錄 VI
表目錄 VIII
第一章 緒論 1
1.1前言 1
1.2 研究背景 2
1.2.1太陽光譜(Solar Spectrum) 2
1.2.2太陽能電池種類介紹 5
1.2.3有機太陽能電池優、缺點 7
1.3研究動機 7
第二章 理論基礎與文獻回顧 9
2.1太陽能電池六大參數介紹 9
2.1.1太陽能電池等效電路圖 12
2.2有機太陽能電池結構發展 13
2.2.1單層結構 13
2.2.2電子施體/受體雙層異質接面結構 14
2.2.3混合型異質接面結構太陽能電池 15
2.3有機高分子太陽能電池之工作原理 17
第三章 實驗流程與設備 23
3.1 實驗材料 23
3.1.1 ITO玻璃基板 23
3.1.2導電高分子PEDOT:PSS介紹 23
3.1.2有機主動層材料P3HT/PCBM介紹 24
3.1.3溶劑介紹 26
3.2製作太陽能電池流程 27
3.2.1 ITO玻璃基板製備 28
3.2.2 ITO玻璃基板清洗 29
3.2.3 電洞傳輸層塗佈 29
3.2.4主動層塗佈製作 29
3.2.5前退火製程 29
3.2.6陰極真空蒸鍍 30
3.2.7後退火製程 30
3.3表面形貌分析步驟 31
3.3.1蝕刻電極 31
3.4實驗儀器 32
3.4.1 超音波清洗機(Ultrasonic Cleaning) 32
3.4.2 紫外光臭氧清洗機(UV-Ozone) 33
3.4.3 加熱攪拌器( Hot Plate) 33
3.4.4 旋轉塗佈機(Spin Coater) 34
3.4.5 手套箱(Glove Box) 35
3.4.6 熱蒸鍍機(Thermal Evaporation) 37
3.4.7 I-V曲線量測系統(I-V curve measurement system) 38
3.4.8 AFM原子力顯微鏡(Atomic Force Microscope) 40
3.4.9 奈米壓痕(Nanoindenter) 42
第四章 結果與討論 45
4.1 有機太陽電池量測分析 45
4.2 原子力顯微鏡表面形貌量測分析 47
4.2.1有無UV-Ozone處理之ITO基板表面分析 48
4.2.2 電洞傳輸層PEDOT:PSS層表面分析 49
4.2.3 主動層表面分析 50
4.2.4 陰極鋁層之表面分析 56
4.2.5 表面分析實驗結果總結 60
4.3奈米壓痕分析 62
第五章 結論 65
參考文獻 67
論文發表清單 i


[1] Wikipedia, http://en.wikipedia.org/wiki/File:Solar_Spectrum.png
[2] Newport, Introduction to Solar Radiation, http://www.newport.com/Introduction-to-Solar-Radiation/411919/1033/content.aspx
[3] B. O. Regan, M. Grätzel, “A Low-cost, High-Efficiency Solar Cell based Dye-Sensitized Colloidal Tio2 FIlms”, Nature 353 (1991) 737.
[4] A. Yella, H. W. Lee, H. N. Tsao, C. Yi, A. Chandiran, M.K. Nazeeruddin, E.W.G. Diau, C.Y. Yeh, S.M. Zakeeruddin, M. Grätzel, "Porphyrin-sensitized solar cells with cobalt (II/III)–based redox electrolyte exceed 12 percent efficiency", Science 334.6056 (2011) 629-634.
[5] G. Li, V. Shrotriya, J. S. Huang, Y. Yao, T. Moriarty, K. Emery, Y. Yang, “High-Efficiency Solution Processable Polymer Photovoltaic Cells by Self-organization of Polymer Blends”, Nat. Mater. 4 (2005) 864.
[6] A. Orimo, K. Masuda, S. Honda, H. Benten, S. Ito, H. Ohkita, H. Tsuji, "Surface Segregation at the Aluminum Interface of Poly(3-hexylthiophene)/Fullerene Solar Cells", Appl. Phys. Lett. 96 (2010) 043305
[7] L.S. Roman, O. Inganäs, T. Granlund, T. Nyberg, M. Svensson, M.R. Andersson, J.C. Hummelen, "Trapping Light in Polymer Photodiodes with Soft Embossed Gratings", Adv. Mater. 12 (2000) 189.
[8] H. Kallmann, M. Pope, “Photovoltaic Effect in Organic Crystals”, J. Chem. Phys. 30 (1958) 585.
[9] C. W. Tang, “Two Layer Organic Photovoltaic Cell”, Appl. Phy. Lett. 48 (1986) 183.
[10] J. J. M. Halls, K. Pichler, R. H. Friend, “ Exciton Diffusion and Dissociation in a Poly(p-phenylenevinylene)/ C60 Heterojunction Photovoltaic Cell”, Appl. Phys. Lett. 68 (1996) 3120.
[11] P. Peumans and S. R. Forrest, “Very-High-Efficiency Double-Hetero Structure Copper Phthalocyanine/C60 Photovoltaic Cells”, Appl. Phys. Lett. 79 (2001) 126.
[12] N. S. Sariciftci, L. Smilowitz, A. J. Heeger, F. Wudl, “PhotoinducedElectron Transfer from a Conducting Polymer to Buckminsterfullerene”, Science 258 (1992) 1474.
[13]N. S. Sariciftci, D. Braun, C. Zhang, V. I. Srdanov, A. J. Heeger,G.Stucky, F. Wudl, “Semiconducting Polymer‐BuckminsterFullerene Heterojunctions: Diodes, Photodiodes, and PhotovoltaicCells” , Appl. Phys. Lett. 62 (1993) 585.
[14] G. Yu, J. Gao, J. C. Hummelen, F. Wudl, and A. J. Heeger, “Polymer Photovoltaic Cells: Enhanced Efficiencies via a Network of Internal Donor-Acceptor Heterojunctions, Science 270 (1995) 1789.
[15] S. E. Shaheen, C. J. Brabec, N. S. Sariciftci, F. Padinger, T. Fromherz, and J. C. Hummelen, “2.5% Efficient Organic Plastic Solar Cell”, Appl. Phys. Lett. 78 (2001) 841.
[16] G. Li, V. Shrotriya, Y. Yao, and Y. Yang, “Investigation of Annealing Effects and Film Thickness Dependence of Polymer Solar Cells based on Poly(3-hexylthiophene) ”, J. Appl. Phys. 98 (2005) 043704.
[17] L. J. A. Koster, V. D. Mihailetchi, and P. W. M. Blom, “Ultimate
Efficiency of Polymer/Fullerene Bulkheterojunction Solar Cells”,
Appl. Phys. Lett. 88 (2006) 093511-1.
[18] C. M. Scharber, D. Mühlbacher, M. Koppe, P. Denk, C. Waldauf ,A. J. Heeger, andJ. C. Brabec, “Design Rules for Donors in Bulk-Heterojunction Solar Cells—Towards 10% Energy-Conversion Efficiency”, Adv. Mater. 18 (2006) 789.
[19] Forrest, S. R., "The limits to organic photovoltaic cell efficiency", MRS Bull. 2005, 30, 28-32
[20] U. Lang, L. Muller, N. Naujoks, J. Dual, “Microscopical Investigations of PEDOT:PSS Thin Films”, Advanced FunctionalMaterials 19 (2009) 1215.
[21] H. Choi , B. Kim , Y. J. Ko , D. Lee , H. Kim , S. H. Kim ,K. Kim, “Solution processed WO3 layer for the replacement of PEDOT:PSS layerin organic photovoltaic cells”, Organic Electronics 13 (2012) 959–968.
[22] Y.S. Kim, Y. Lee, J.K. Kim, E.O. Seo, E.W. Lee, W. Lee, S.H. Han, S.H. Lee, "Effect of solvents on the performance and morphology of polymer photovoltaic devices.", Current Applied Physics 10(2010) 985-989.
[23] 汪建民主編,“材料分析”, 中國材料科學學會, 新竹市 (1998).
[24] Oliver, C. Warren, George M. Pharr, "Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology", Journal of materials research 19(2004) 3-20.
[25] Oliver, C. Warren, George M. Pharr, "Improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments", Journal of materials research 7 (1992)1564-1583.
[26] 張瑞慶,“奈米壓痕技術與應用”
[27] 蔡懷文, “退火製程對於有機太陽電池之表面特性研究”,東華大學光電所碩士論文(2012).
[28] Kim, Heejoo, Won-Wook So, and Sang-Jin Moon, "The importance of post-annealing process in the device performance of poly (3-hexylthiophene): methanofullerene polymer solar cell", Solar energy materials and solar cells 91 (2007) 581-587.
[29] Hlaing, M. Htay, "Integration of Nanostructured Semiconducting /Conducting Polymers", (2012).

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊