跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.110) 您好!臺灣時間:2025/09/25 07:53
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林謂立
研究生(外文):Lin, Wei-Li
論文名稱:以模糊邏輯建構的品質導向網際網路服務選擇模型
論文名稱(外文):A QoS-Based Web Service Selection Model Using Fuzzy Logic
指導教授:羅濟群羅濟群引用關係趙國銘趙國銘引用關係
指導教授(外文):Lo, Chi-ChunChao, Kuo-Ming
學位類別:博士
校院名稱:國立交通大學
系所名稱:資訊管理研究所
學門:電算機學門
學類:電算機一般學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:95
中文關鍵詞:品質服務網際網路服務模糊邏輯服務決策
外文關鍵詞:QoSWeb ServiceFuzzy LogicService Selection
相關次數:
  • 被引用被引用:0
  • 點閱點閱:424
  • 評分評分:
  • 下載下載:133
  • 收藏至我的研究室書目清單書目收藏:2
在本研究中,我們進行了兩階段以網際網路服務品質為導向的網際網路服務選擇模型研究 - QCMA模型(QCMA: QoS Consensus Moderation Approach) 與 FMG-QCMA模型 (Fuzzy Multi- Groups-Based QCMA)。第一階段的QCMA模型著重以辨識網際網路參與者對網際網路服務品質感知的相似度,進而確認這些參與者是否具高相似度,並根據已確認之高相似度參與者對網際網路服務品質因素偏好優先順序,決定這個高相似性群體對於網際網路服務選擇之決策模型。第二階段的FMG-QCMA模型著重於思考不同之消費者其差異過大的性格背景偏好差異,進而研究結合多維度的網際網路服務品質因素結構的分群演算法,建立更有效率的多群組架構網際網路選擇的決策模型。同時,在分群結構之中,因相似度些微低於分群比對的相似合格度,就被裁定網際網路服務品質意見為不相似,本研究也提出了模糊邊界的概念,將近似合格邊界的網際網路品質意見,納入為該群組之模糊相似意見,進而更明確的掌握分群有效性,避免分群失真現象。

本研究之模型適合任一種網際網路服務應用之目標客群分析,如線上旅行社、網際網路商城、網路拍賣會等網際網路應用服務。
In this research, two stages of modeling for QoS-aware selection of web service were established – QCMA (QoS Consensus Moderation Approach) and FMG-QCMA (Fuzzy Multi- Groups-Based QCMA). QCMA was proposed as the first stage in order to indentifying a group of participants by their high similarity and obtaining the group preference over all QoS attributes. FMG-QCMA was proposed as second stage in order to thinking over the distinct background and preference over QoS attributes among all web service participants. For this purpose a more efficient multi-attributes-based multi-groups clustering approach was studied for developing multi-groups-based QoS-aware selection model of web service. Also, the concept of fuzzy boundary, which is used for preventing possible omission of some opinions that should be treated as “similar” to group centre but cannot beyond the threshold distance defined in clustering criterion, was thought over.

The models in the research can be applied to “target customers analysis” on any web service application such as e-tourist agency, e-mall or e-auction.
摘 要 i
ABSTRACT ii
誌 謝 iii
Content v
Table vii
Figure viii
Symbols ix
Chapter 1. Introduction - QoS-aware Selection of Web Services 1
1.1 RESEARCH BACKGROUND AND MOTIVATION 1
1.2 TWO STAGES FOR RESEARCH OBJECTIVE: QCMA AND FMG-QCMA 3
1.3 STRUCTURE OF THE DESSERTATION 6
Chapter 2. Literatures Review 8
2.1 WEB SERVICE 8
2.1.1 Web Service Definition 8
2.1.2 XML (Extensible Markup Language) 9
2.1.3 SOAP (Simple Object Access Protocol) 10
2.1.4 WSDL (Web Service Description Language) 11
2.1.5 UDDI (Universal Description Discovery & Integration) 12
2.2 QOS-AWARE WEB SERVICE SELECTION – EXISTING SOLUTIONS 14
2.2.1 QoS for Web Service 14
2.2.2 Current Literatures about QoS-aware Web Service Selection 19
2.2.3 Research Foundation - MFDM 21
2.3 MULTI-ATTRIBUTES-BASED OPINIONS CLUSTERING - EXISTING SOLUTIONS 23
Chapter 3. QoS Consensus Moderation Approach (QCMA) 29
3.1 APPROACHES, FRAMEWORK AND BEHAVIOR 29
3.1.1 Similarity Aggregation Method (SAM) 30
3.1.2 Resolution Method for Group Decision Problems (RMGDP) 34
3.1.3 QCMA Functions Enhancement and Behavior 37
3.2 VALIDATION AND EVALUATION 42
3.2.1 Similarity Analysis via SAM in QCMA 42
3.2.2 Preference Analysis via RMGDP 44
3.3 REVIEW ON QCMA 48
Chapter 4. Fuzzy Multi-Groups-based QCMA (FMG-QCMA) 50
4.1 APPROACHES, FRAMEWORK AND BEHAVIOR 50
4.1.1 System Functions Deployment in FMG-QCMA 52
4.1.2 System Behavior of FMG-QCMA 56
4.1.3 FMGSAM and Multi-Groups RMGDP 61
4.1.4 Precision and Efficiency 64
4.2 VALIDATION AND EVALUATION 65
4.2.1 Reaching Consensus: FMGSAM Process 67
4.2.2 Reaching Consensus: RMGDP Process 69
4.2.3 Marketing Web Service 71
4.2.4 Process of FMG-QCMA Moderation 72
4.3 REVIEW ON FMG-QCMA: PRECISION AND EFFICIENCY 74
Chapter 5. Conclusion 76
References 79
Appendix A: Raw Data for QCMA Validation 84
Appendix B: Algorithm Fuzzy Clustering 87
Appendix C: Algorithm SimVerifier 89
Appendix D: Algorithm Clustering Verification 91
個人簡歷 94
[1] Alonso, G., Web Service – Concepts, Architectures and Applications, Springer Verlag, ISBN 3-540-44008-9, Berlin Heidelberg, 2004
[2] Bellwood, T. et al., UDDI Version 3.0 – UDDI Spec Technical Committee Specification, 19 July 2002, Available at http://www.uddi.org/pubs/uddi-v3.00-published-20020719.htm
[3] Benatallah, B., Dumas, M., Sheng, Q.Z., Facilitating the rapid development and scalable orchestration of composite web services, Distributed and Parallel Databases 17 (2005), pp. 5–37.
[4] Benatallah, B., Sheng, Q.Z., Dumas, M., The Self-Serv environment for web services composition, IEEE Internet Computing 7 (2003) (1), pp. 40–48.
[5] Biron, P. V., Permanente, K., Malhotra, A., XML Scheme Part 2: Datatypes Second Edition, W3C Recommendation 28 October 2004, http://www.w3.org/TR/xmlschema-2/
[6] Box, D. et al., Simple Object Access Protocol (SOAP) 1.1, May 2000, Available at http://www.w3.org/TR/2000/NOTE-SOAP-20000508/.
[7] Bray, T. et al., Extensible Markup Language (XML) 1.0 (Fifth Edition) W3C Recommendation 26 Nov. 2008, Available at http://www.w3.org/TR/REC-xml/.
[8] Chao, K.M. et al., Fuzzy Matchmaking for Web Service, Proceedings of 19 IEEE Conference on Advanced Network and Information Application, IEEE CS, 2005, pp 721-726
[9] Chiclana, F., Herrera, F., Herrera-Viedma, E.: A Classification Method of Alternatives for Multiple Preference Ordering Criteria Based on Fuzzy Majority. Journal of Fuzzy Math., Vol. 34, 1996, pp 224–229
[10] Chiclana, F., Herrera, F., and Herrera-Viedma, E., Integrating Multiplicative Preference Relations in A Multipurpose Decision-making Model Based on Fuzzy Preference Relations. Fuzzy Sets and Systems, Elsevier Science, Vol. 122. , 2001, pp 277–291
[11] Chiclana, F., Herrera, F., Herrera-Viedma, E., Integrating Three Representation Models in Fuzzy Multipurpose Decision Making Based on Fuzzy Preference Relations. Fuzzy Sets and Systems, Elsevier Science, Vol. 97., 1998, 33–48
[12] Christensen, E. et al., Web Services Description Language (WSDL) 1.1 W3C Note 15 March 2001, Available at http://www.w3.org/TR/wsdl.html.
[13] eMarketer, An Emerging Consensus Paints a Positive Picture, eMarketer 27 November 2006, http://www.emarketer.com/Article.aspx?R=1004293
[14] Fazeli, M., Sarbazi-Azad, H., Farivar, R., Parallel Clustering on the Star Graph, Lecture Notes on Computer Science, Vol. 3719/2005, pp 287-292
[15] Fung, C.K. et al., A Service-Oriented Composition Framework with QoS Management, International Journal of Web Services Research, Vol. 3, Issue 3, 2006, pp 108 - 132
[16] Gunther N. J., The Practical Performance Analyst, McGraw-Hill, 1998
[17] Hathaway, R., Bezdek, J., Fuzzy c-means clustering of incomplete data, IEEE Trans. Syst., Man, Cybern., vol. 31, no. 5, 2001, pp. 735-744
[18] Herrera-Viedma, E., Herrera, F., Chiclana, F., A Consensus Model for Multiperson Decision Making With Different Preference Structures. IEEE Transactions on Systems, Man and Cybernetics, IEEE, Vol.32., 2002, pp 394–402
[19] Herrera, F. et al., A Rational Consensus Model in Group Decision Making Using Linguistic Assessments. Fuzzy set and Systems, Elsevier Science, Vol. 88, 1997, pp 31–49
[20] Höppner, F., Klawonn, F., Kruse, R., Fuzzy Cluster Analysis: Methods for Classification, Data Analysis, and Image Recognition, New York: Wiley, 1999
[21] Hsu, H.M., Chen, C.T., Aggregation of Fuzzy Opinions under Group Decision Making, Fuzzy Sets and Systems, Vol 79, 1996, 279-285
[22] Huang, C.L., Chao, K.M., Lo, C.C., A Moderated Fuzzy Matchmaking for Web Services, Proceedings of The 5th International Conference on Computer and Information Technology, Shanghai, China, IEEE CS, 2005, pp 1116-1122.
[23] IEEE, IEEE Standard Computer Dictionary: A Compilation of IEEE Standard Computer Glossaries, New York, NY, 1990.
[24] Jaeger, M.C., Rojec-Goldmann, G., Mühl, G., Qos aggregation for service composition using workflow patterns. In Proceedings of the 8th International Enterprise Distributed Object Computing Conference (EDOC 2004), page 149-159, Monterey, California, USA, September 2004. IEEE CS Press.
[25] Jaeger, M.C., Rojec-Goldmann, G., Mühl. G., Qos aggregation in web service compositions. In: Proceedings of the 2005 IEEE International Conference on e-Technology, e-Commerce and e-Service (EEE-05), Hong Kong, China, March 2005. IEEE Press, pp. 181-185.
[26] Jain, A.K., Murty, M.N., Flynn, P.J., Data Clustering: A Review, ACM Computing Surveys, Vol 31, issue 3, 1999, pp 264-323
[27] Kannan, R., Vampala, S., Vetta, A., On Clustering: Good, Bad and Spectral, Journal of the ACM, Vol. 51, No.3, May 2004, pp 497-515.
[28] Kim, D.Y., Kim, T.Y., Evaluation of Classified Information on Web Agent Using Fuzzy Theory, International Journal of Fuzzy Logic and Intelligent Systems, Vol.5, No. 3, (2005.09), pp 216-221,
[29] Liu Y., Ngu, A.H.H., Zeng, L., QoS Computation and Policing in Dynamic Web Service Selection, ACM WWW Conference, May 2004, New Yourk, USA, pp. 66-73
[30] Media Mall, US Online Ad Spending Continues Rapid Growth, Media Mall 27 November 2006, http://www.mediamall.com/blogger/2006_11_01_archive.html
[31] Menasce, D.A., Composing web services: A QoS view, IEEE Internet Computing 8 (2004) (6), pp. 88–90.
[32] Menasce, D.A., QoS issues in Web services, Internet Computing, IEEE, Vol. 6, 2002, pp 72-75
[33] Mou, Y. et al., Interactive Web service choice-making based on extended QoS model, Journal of Zhejiang University – Science A, 2006, pp 483-492.
[34] Nielsen, H., Leach, P., Lawrence, S., An HTTP Extension Framework, RFC 2774, Microsoft, Microsoft, Agranat Systems
[35] Orlovski, S.A., Decision-Making with A Fuzzy Preference Relation. Fuzzy Sets and Systems, Elsevier Science, Vol.1, 1978, 155-167
[36] Rajesh S., Arulazi D., Quality of Service for Web Services-Demystification, Limitations, and Best Practices, March 2003. http://www.developer.com/services/article.php/2027911.
[37] Ran, S., A Model for Web Services Discovery With QoS, ACM SIGecom Exchanges, 4(1), March 2003.
[38] Sadeh, L., Fuzzy Set, Inf. Control, Vol. 8, 1965, pp. 338 – 353
[39] Sycara, K., Widoff, S., Dynamic Matchmaking Among Heterogeneous Software Agents in Cyberspace, Journal of AAMAS, 5, Kluwer Academic Publishers, 2002.
[40] W3C, QoS for Web Service: Requirements and Possible Approaches, W3C Working Group Note 25 November, http://www.w3c.or.kr/kr-office/TR/2003/ws-qos/, 2003.
[41] Wang, H. et al., Clustering by Pattern Similarity in Large Data Sets, Data Mining, Third IEEE International Conference on, 2003, pp. 187-194
[42] Wang, Y., Stroulia, E., Flexible Interface Matching for Web-Service Discovery, Proceedings of Fourth International Conference on Web Information System Engineering, IEEE CS, December, 2003
[43] Wen, J.R., Nie, J.Y., Zhang, H.J., Query Clustering Using User Logs, ACM Transactions on Information Systems, Vol. 20, No. 1, January 2002, pp 59-81.
[44] W.M.P. van der Aalst. Don’t go with the flow: Web services composition standards exposed. Jan/Feb 2003 issue of IEEE Intelligent System, pages 72-76, January 2003.
[45] Xu, R., Survey of Clustering Algorithms, IEEE Transactions on Neural Networks, Vol. 16, No. 3, May 2005
[46] Yang, G., Chen, H.P., An Extensible Computing Model for Reputation Evaluation Based on Objective and Automatic Feedbacks, Advanced Language Processing and Web Information Technology, 2008. ALPIT '08. International Conference on, 2008, pp 585-592.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊