跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.158) 您好!臺灣時間:2025/12/01 09:00
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:黃科憲
研究生(外文):Ko-Hsien Huang
論文名稱:永磁同步電動機之效率改善
論文名稱(外文):Efficiency Improvement of Permanent-Magnet Synchronous Motors
指導教授:葉勝年葉勝年引用關係
指導教授(外文):Sheng-Nian Yeh
學位類別:碩士
校院名稱:國立臺灣科技大學
系所名稱:電機工程系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:60
中文關鍵詞:效率改善電樞電流最佳化控制最小輸入功率補償
外文關鍵詞:efficiency improvementoptimal armature current vectorminimal input power tracing technique
相關次數:
  • 被引用被引用:9
  • 點閱點閱:713
  • 評分評分:
  • 下載下載:88
  • 收藏至我的研究室書目清單書目收藏:2
本文為高功率永磁同步電動機之效率改善分析及實測。文中採用電樞電流最佳化控制,藉由推導得到直軸電流與電氣損失之關係,控制直軸電流使電氣損失最少,俾系統運轉於最佳效率點,並加入最小輸入功率補償策略,以功率追蹤的方式消除電動機之參數變動影響,達到效率最佳化控制目的。同時,利用軟體補償技巧以減少交、直軸電流振盪量,使得輸出功率更加平穩,增加系統穩定度。
本系統電路以數位信號處理器(DSP TMS320F240)為控制核心,經由數位控制軟體程式之發展,完成了實體製作。本文採200馬力(150kW )之交流永磁同步電動機作測試,在零直軸電流之控制策略下,負載為37kW運轉時,電動機運轉效率約為91.39%,而在相同條件下,利用電樞電流最佳化控制策略,則電動機運轉效率提高至92.49% ,效率改善約1.1%。
關鍵詞:效率改善、電樞電流最佳化控制、最小輸入功率補償
This thesis is concerned with efficiency improvement of permanent-magnet synchronous motors. The optimal armature current vector is proposed to reduce copper and iron losses. In order to decrease q-d axis current ripple, a compensator is designed to correct controller parameters. Furthermore, a minimal input power tracing technique, which is insensitive to motor parameters, is proposed to increase the stability of the system.
A digital control system for 150kW ac permanent-magnet synchronous motor is realized with digital signal processor (DSP TMS320F240). Experimental results indicate that the operation efficiency is increased from 91.39% to 92.49% for output power of 37kW by the proposed optimal armature current vector control method.
Keyword:efficiency improvement, optimal armature current vector, minimal input power tracing technique
中文摘要 i
英文摘要 ii
誌 謝 iii
目 錄 iv
符號索引 vi
圖表索引 x
第一章 緒論 1
1.1 簡介 1
1.2 系統架構 2
1.3 本文大綱 3
第二章 交流永磁同步電動機之數學模式 4
2.1 前言 4
2.2 交流永磁同步電動機之三相系統數學模式 4
2.3 交流永磁同步電動機之轉子同步旋轉座標系統數學模式 7
2.4 結語 11
第三章 交流永磁同步電動機參數量測 12
3.1 前言 12
3.2 光學編碼器絕對位置值之量測 12
3.3 轉子等效磁通鏈之量測 14
3.4 交、直軸電感之量測 14
3.5 定子電阻之量測 15
3.6 鐵損電阻之量測 16
3.7 結語 17
第四章 交流永磁同步電動機效率改善策略 18
4.1 前言 18
4.2 電樞電流最佳化控制策略 18
4.3 最小輸入功率補償策略 30
4.4 軟體補償技巧 30
4.4.1 前饋補償 30
4.4.2 脈寬調變加入導通延遲時間之補償策略 31
4.4.3 角度取樣補償 34
4.4.4 電壓取樣補償 35
4.5 結語 36
第五章 系統製作及實測 37
5.1 前言 37
5.2 實體製作 37
5.2.1 變流器及其驅動電路 39
5.2.2 電流偵測電路 39
5.2.3 軟體規劃 40
5.3 實測結果 48
5.4 結語 49
第六章 結論與建議 54
6.1 結論 54
6.2 建議 55
參考文獻 56
附錄A 交流永磁同步電動機之規格及參數 59
作者簡介 60
[1] H. Van Der Broeck, H. C. Skudelny, and G. V. Stanke, “Analysis and realization of a pulsewidth modulator based on voltage space vectors,” IEEE Transactions on Industry Applications, vol. 24, no. 1, pp. 142-149, 1988.
[2] J. Holtz, “Pulsewidth modulation for electronics power conversion,” IEEE Proceedings, vol. 82, no. 8, pp. 1194-1214, 1994.
[3] N. Mohan, T. M. Undeland, and W. P. Robbins, Power Electronics, Converters, Applications, and Design, New York: Wiley, 1995.
[4] H. Le-Huy, “Microprocessors and digital IC’s for motion control,” IEEE Proceedings, vol. 82, no. 8, pp. 1140-1163, 1994.
[5] Y. Y. Tzou and H. J. Hsu, “FPGA realization of space-vector PWM control IC for three-phase PWM inverters,” IEEE Transactions on Power Electronics, vol. 12, no. 5, pp. 953-963, 1997.
[6] P. Pillay, C. R. Allen, and R. Budhabhathi, “DSP-based vector and current controllers for a permanent magnet synchronous motor drive,” in Proceedings of the IEEE/IAS Annual Meeting, vol. 1, pp. 539-544, 1990.
[7] P. Pillay and R. Krishnan, “Application characteristics of permanent magnet synchronous and brushless DC motor for servo drives,” IEEE Transactions on Industry Applications, vol. 27, no. 5, pp. 986-996, 1991.
[8] T. M. Jahns, “Motion control with permanent-magnet AC machines,” IEEE Proceedings, vol. 82, no. 8, pp. 1241-1252, 1994.
[9] R. F. Schiferl and T. A. Lipo, “Power capability of salient pole permanent magnet synchronous motor in variable speed drive applications,” IEEE Transactions on Industry Applications, vol. 26, no. 1, pp. 115-123, 1990.
[10] A. K. Adnanes, “Torque analysis of permanent magnet synchronous motors,” IEEE PESC Conference Record, pp. 695-701, 1991.
[11] S. Morimoto, M. Sanada, and Y. Takeda, “Wide-speed operation of interior permanent magnet synchronous motors with high-performance current regulator,” IEEE Transactions on Industry Applications, vol. 30, no. 4, pp. 920-926, 1994.
[12] S. Morimoto, K. Hatanaka, Y. Tong, Y. Takeda, and T. Hirasa, “Servo drive system and control characteristics of salient pole permanent magnet synchronous motors,” IEEE Transactions on Industry Applications, vol. 29, no. 2, pp. 338-342, 1993.
[13] S. Morimoto, Y. Takeda, K. Hatanaka, Y. Tong, and T. Hirasa, “Design and control system of permanent magnet synchronous motor for high torque and high efficiency operation,” in Proceedings of the IEEE/IAS Annual Meeting, vol. 1, pp. 176-181, 1991.
[14] S. Morimoto, M. Sanada, and Y. Takeda, “Effects and compensation of magnetic saturation in flux-weakening controlled permanent magnet synchronous motor drives,” IEEE Transactions on Industry Applications, vol. 30, no. 6, pp. 1632-1637, 1994.
[15] J. M. Kim and S. K. Sul, “Speed control of interior permanent magnet synchronous motor drives for the flux weakening operation,” IEEE Transactions on Industry Applications, vol. 33, no. 1, pp. 43-48, 1997.
[16] B. Sneyers, D. W. Novotny, and T. A. Lipo, “Field weakening in buried permanent magnet AC motor drives,” IEEE Transactions on Industry Applications, vol. IA-21, no. 2, pp. 398-407, 1985.
[17] S. Morimoto, Y. Tong, Y. Takeda, and T. Hirasa, “Loss minimization control of permanent magnet synchronous motor drives,” IEEE Transactions on Industry Applications, vol. 41, no. 5, pp. 511-517, 1994.
[18] R. Monajemy and R. Krishnan, “Control and dynamics of
constant power loss based operation of permanent-magnet synchronous motor drive system,” IEEE Transactions on Industry Applications, vol. 48, no. 4, pp. 839-844, 2001.
[19] Mi Chunting, G.R. Slemon, and R. Bonert, “Minimization of iron losses of permanent magnet synchronous machines,” in Proceedings of the ICEMS, vol. 2, pp. 818-823, 2001.
[20] Mi Chunting, G.R. Slemon, and R. Bonert, “Modeling of iron losses of surface-mounted permanent magnet synchronous motors,” in Proceedings of the IEEE/IAS Annual Meeting, vol. 4, pp. 2585-2591, 2001.
[21] 何世賓,凸極式永磁式同步電動機之高效率及高速控制系統研製,國立台灣科技大學電機工程研究所碩士論文,民國八十九年。
[22] TMS320C24x DSP Controllers CPU, System, and Instruction Set, vol. 1, Texas Instruments, 1997.
[23] TMS320C24x DSP Controllers Peripheral Library and Spectific Devices, vol. 2, Texas Instruments, 1997.
[24] 李隆財,吳金勇,TMS320C240原理與實習,長高企業有限公司,民國八十九年。
[25] TMS320C24x DSP Controllers Evaluation Module, Texas Instruments, 1997.
[26] D. Leggate and R. J. Kerkman, “Pulse-based dead-time compensator for PWM voltage inverters,” IEEE Transactions on Industrial Electronics, vol. 44, no. 2, pp. 191-197, 1997.
[27] S. G. Jenog and M. H. Park, “The analysis and compensation of dead-time effects in PWM inverters,” IEEE Transactions on Industrial Electronics, vol. 38, no. 2, pp. 108-114, 1994.
[28] T. Sukegawa, K. Kamiyama, K. Mizuno, T. Matsui, and T. Okuyama, “Fully digital vector-controlled PWM VSI-fed AC drives with an inverter dead-time compensation strategy,” IEEE Transactions on Industry Applications, vol. 27, no. 3, pp. 552-559, 1991.
[29] 賴惠敏,無量測器向量控制變頻器低轉速控制策略與調適,國立台灣科技大學電機工程研究所碩士論文,民國八十七年。
[30] P. D. Evans and P. R. Close, “Harmonic distortion in PWM inverter output waveforms,” IEE Proceedings, vol. 134, pt. B, no. 4, 1987.
[31] R. C. Dodson, P. D. Evans, H. T. Yazdi, and S. C. Harley, “Compensating for dead time degradation of PWM inverter waveforms,” IEE Proceedings, vol. 137, pt. B, no. 2, 1990.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top