跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.62) 您好!臺灣時間:2025/11/18 22:51
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:李承鋒
研究生(外文):Cheng-Feng Li
論文名稱:利用曲線擬合找到血流灌注磁振影像的血液動力參數
論文名稱(外文):Through Curve Fitting to Find Hemodynamic Parameters from Perfusion Magnetic Resonance Images
指導教授:高怡宣高怡宣引用關係
指導教授(外文):Yi-Hsuan Kao
學位類別:碩士
校院名稱:國立陽明大學
系所名稱:放射醫學科學研究所
學門:醫藥衛生學門
學類:醫學技術及檢驗學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:54
中文關鍵詞:曲線擬合血流灌注磁振影像血液動力參數相對腦血流流量相對腦血流體積平均穿流時間
外文關鍵詞:Curve FittingPerfusion Magnetic Resonance ImagesHemodynamic ParametersrCBFrCBVMTT
相關次數:
  • 被引用被引用:0
  • 點閱點閱:527
  • 評分評分:
  • 下載下載:31
  • 收藏至我的研究室書目清單書目收藏:0
血流灌注磁振影像的血液動力參數包含相對腦血流體積(rCBV)、相對腦血流流量(rCBF)以及平均穿流時間(MTT)。rCBF和MTT可以藉由動脈輸入函數(Arterial input function)做捲積(convolution)來得到。然而藉由奇異值分解法(SVD)所得到的rCBF對於對比劑的延遲效應非常敏感,而這個現象會發生在有大腦血管有病變的地方。
我們模擬對比劑延遲效應對於SVD計算rCBF所造成的影響。模擬研究顯示在對比劑延遲的情況下,較短的MTT會造成rCBF有較大的低估,而這也會造成MTT高估。因此,可以透過曲線擬合找到延遲時間,把延遲的組織濃度時間曲線做時間平移,平移到和動脈輸入函數的濃度時間曲線同時到達,再經由SVD計算所得到的rCBF會比修正前來的準確。然而利用SVD所得到的rCBF主要和閥值有關,閥值的選取是經由模擬實驗得到,而每一個人的生理條件不同,所以模擬實驗所選取的條件並沒辦法符合每一個人,而rCBF的不準確會間接影響到MTT。
這裡我們提供了一個不用透過閥值,就可以直接同步計算出rCBF和MTT的方法,這個方法首先需假設殘餘函數(Residual function)是指數衰減型,接著透過曲線擬合找到延遲時間,把延遲的組織濃度時間曲線做時間平移,平移到和動脈輸入函數的濃度時間曲線同時到達,接著再經由最小平方差的曲線擬合來得到rCBF、MTT。模擬結果顯示,利用曲線擬合找到的rCBF及MTT,比SVD方法來的準確。我們利用三種計算血液動力參數的方法:(1)直接以SVD計算;(2)經過延遲校正後,再以SVD計算;(3)經過延遲校正後,以曲線擬合計算。分析了一位健康受試者和二位病人的rCBF、MTT和rCBV影像,最後再藉由二維散佈圖(scatter plot)比較影像的結果。
Hemodynamic parameters such as relative cerebral volume (rCBV), relative cerebral blood flow (rCBF), and mean transit time (MTT) are assessed using dynamic susceptibility contrast MRI (DSC-MRI). The rCBF and MTT can be determined by deconvolution with an arterial input function(AIF). However, the singular value decomposition (SVD) deconvolution method is sensitive to the tracer delay that it often occurs in patients with cerebrovascular disease.
We investigated the effect of tracer delay on rCBF determined by SVD deconvolution. Simulation study showed that shorter MTT will cause larger underestimation of rCBF and overestimation of MTT in tracer delay. Delay correction methods were developed to find tracer arrival delay between the AIF and concentration time curve, and concentration time curve was shifted to coincide with that of the AIF. The simulations showed that the corrected rCBF was more accurate than uncorrected one. However, rCBF was depended on threshold by SVD, threshold was found by simulation. Since everyone had different physics condition, therefore simulation condition was not fit to everyone. However, rCBF inaccuracy will affect MTT indirectly.
We proposed a method that did not depend on threshold, and rCBF and MTT can calculated directly. At first, we assumed residual function equaled exponential decay. A curve fitting technique was used to find tracer arrival delay between the AIF and concentration time curve, and concentration time curve was shifted to coincide with that of the AIF. Finally, rCBF and MTT were determined using curve fitting. The simulations showed that the rCBF and MTT obtained from curve fitting was more accurate than the two SVD methods. We applied three methods of calculating the rCBF, MTT, and rCBV images for one normal volunteer and two patients. Finally, we analysis the results of images by scatter plot.
摘要 2
ABSTRACT 4
目錄 6
1.緒論 7
2.理論 10
2.1奇異值分解(SVD) 11
2.2 利用積分長時間窗口來計算rCBV 13
2.3修正延遲效應 14
2.4利用least-squares curve fitting找到rCBV、rCBF、MTT 15
3.電腦模擬流程: 16
3.1 首先是模擬動脈輸入函數(AIF): 17
3.2 模擬組織對比劑濃度(Ct(t)): 18
3.3 模擬延遲效應: 22
4.臨床影像分析 23
4.1受試者 23
4.2影像擷取 23
4.3影像後處理 24
5.結果 26
5.1.1 電腦模擬-修正延遲效應 26
5.1.2 電腦模擬-相對腦血流流量 27
5.1.3 電腦模擬-平均穿流時間 30
5.1.4 電腦模擬-相對腦血流體積 34
5.2.1 臨床影像分析-延遲時間圖譜 38
5.2.2 臨床影像分析-相對腦血流流量 39
5.2.3臨床影像分析-平均穿流時間 40
5.2.3臨床影像分析-平均穿流時間 41
5.2.4 臨床影像分析-相對腦血流體積 43
6.討論與結論 44
6.1 電腦模擬結果 44
6.2.1臨床影像分析-相對腦血流流量 46
6.2.2臨床影像分析-平均穿流時間 46
6.2.3臨床影像分析-相對腦血流體積 47
6.3 結論 48
參考文獻 49
附錄.大腦血流動力和自體調節 53
Bahn M M. (1995) A single-step method for estimation of local cerebral blood volume from susceptibility contrast MRI images. Magn Reson Med 33:309-317.
Baird AE, Warach S (1998) Magnetic resonance imaging of acute stroke. J Cereb Blood Flow Metab 18:583–609.

Boxerman JL, Hamberg LM, Rosen BR, Weisskoff RM (1995) MR contrast due tointravascular magnetic susceptibility perturbations. Magn Reson Med 34:555–66.

Calamante F, Gadian DG, Connelly A (2000) Delay and dispersion effects in dynamic susceptibility contrast MRI: simulations using singular value decomposition.Magn Reson Med 44:466–73.

Calamante F, Gadian DG, Connelly A (2002) Quantification of perfusion using bolus tracking magnetic resonance imaging in stroke: assumptions, limitations,and potentials for clinical use. Stroke 33:1146–51.

Carroll TJ, Rowley HA, Haughton VM (2003) Automatic calculation of the arterial input function for cerebral perfusion imaging with MR imaging. Radiology 227:593–600.

Fisel CR, Ackerman JL, Buxton RB, Garrido L, Belliveau JW, Rosen BR, Brady TJ (1991) MR contrast due tomicroscopically heterogeneous magnetic susceptibility:numerical simulations and application to cerebral
physiology. Magn Reson Med 17:336–47.

Gobbel GT, Fike JR (1994) A deconvolution method for evaluating indicator-dilution curves. Phys Med Biol 39:1833–54.

Ibaraki Masanobu, Eku Shimosegawa, Hideto Toyoshima (2005) Tracer delay correction of cerebral blood flow with dynamic susceptibility contrast-enhanced MRI. J Cereb Blood Flow Metab 25:378-390.

Kao Y H, Guo W Y, Wu Y T, Liu K C, Chai W Y (2003) Hemodynamic segmentation of MR brain perfusion images using independent component analysis, thresholding, and Bayesian estimation. Magn Reson Med 49:885-894.
Kiselev VG (2001) On the theoretical basis of perfusion measurements by dynamic susceptibility contrast MRI. Magn Reson Med 46:1113–22.

Liu Y J, Chung H W, Huang I J, Wang F N (2002) A reinvestigation of maximal signal drop in dynamic-susceptibility contrast Magnetic Resonance Imaging. J Neuroimaging 12:330-338.
Liu H L, Pu Y, Liu Y, Nickerson L, Andrews T (1999) Cerebral blood flow measurement by dynamic contrast MRI using singular value decomposition with an adaptive threshold. Magn Reson Med 42:167-172.
Meier P, Zierler KL (1954) On the theoryof the indicatordilution method for measurement of blood flow and volume. J Appl Physiol 6:731–44.

Mukherjee P, Kang HC, Videen TO, McKinstry RC, Powers WJ, Derdeyn CP (2003) Measurement of cerebral blood flow in chroniccarotid occlusive disease: comparison of dynamic susceptibility contrast perfusion MR imaging with positron emission tomography. Am J Neuroradiol 24:862–71.

Murase K, Kikuchi K, Miki H, Shimizu T, Ikezoe J (2001a) Determination of arterial input function using fuzzy clustering for quantification of cerebral blood flow with dynamic susceptibility contrast enhanced MR imaging. J Magn Reson Imaging 13:797–806.

Murase K, Shinohara M, Yamazaki Y (2001b) Accuracy of deconvolution analysis based on singular value decomposition for quantification of cerebral blood flow using dynamic susceptibility contrast-enhanced magnetic resonance imaging. Phys Med Biol 46:3147–59.

Østergaard L, Weisskoff RM, Chesler DA, Gyldensted C,Rosen BR (1996a) High resolution measurement of cerebral blood flow using intravascular tracer bolus passages. Part I: Mathematical approach and statistical analysis. Magn Reson Med 36:715–25.

Østergaard L, Sorensen AG, Kwong KK, Weisskoff RM, Gyldensted C, Rosen BR (1996b) High resolution measurement of cerebral blood flow using intravascular tracer bolus passages. Part II: Experimental comparison and preliminary results. Magn Reson Med 36:726–36.

Østergaard L, Chesler DA, Weisskoff RM, Sorensen AG,Rosen BR (1999) Modeling cerebral blood flow and flow heterogeneity from magnetic resonance residue data. J Cereb Blood Flow Metab 19:690–9.

Østergaard L, Sorensen AG, Chesler DA, Weisskoff RM, Koroshetz WJ, Wu O, Gyldensted C, Rosen BR (2000) Combined diffusion-weighted and perfusion-weighted flow heterogeneity magnetic resonance imaging in acute stroke. Stroke 31:1097–103.

Perkio J, Aronen H J, Kangasmaki A, Liu Y, Karonen J (2002) Evaluation of four postprocessing methods for determination of cerebral blood volume and mean transit time by dynamic susceptibility contrast imaging. Magn Reson Med 47: 973-981.
Rempp KA, Brix G, Wenz F, Becker CR, Giickel F, Lorenz WJ (1994) Quantification of regional cerebral blood flow and volume with dynamic susceptibility contrastenhanced MR imaging. Radiology 193:637–41.

Schlaug G, Benfield A, Baird AE, Siewert B, Lovblad KO,Parker RA, Edelman RR, Warach S (1999) The ischemic penumbra: operationally defined by diffusion and perfusion MRI. Neurology 53:1528–37.

Schreiber WG, Giickel F, Stritzke P, Schmiedek P,Schwartz A, Brix G (1998) Cerebral blood flow and cerebrovascular reserve capacity: estimation by dynamic magnetic resonance imaging. J Cereb Blood Flow Metab 18:1143–56.

Smith MR, Lu H, Frayne R (2003) Signal-to-noise ratio effects in quantitative cerebral perfusion using dynamic susceptibility contrast agents. Magn Reson Med 49:122–8.

Sorensen AG, Copen WA, Østergaard L, Buonanno FS,Gonzalez RG, Rordorf G, Rosen BR, Schwamm LH, Weisskoff RM, Koroshetz WJ (1999) Hyperacute stroke:simultaneous measurement of relative cerebral blood volume, relative cerebral blood flow, and mean tissue transit time. Radiology 210:519–27.

Teng M H, Cheng H C, Kao Y H (2000) MR perfusion studies of brain for patients with unilateral carotid stenosis or occlusion: evaluation of maps of “time to peak” and “percentage of baseline at peak” Journal of Computer Assisted Tomography 25(1):121–125.

van Osch MJ, Vonken EP, Bakker CJ, Viergever MA (2001)Correcting partial volume artifacts of the arterial input function in quantitative cerebral perfusion MRI. Magn Reson Med 45:477–85.

Willian J.Powers. Cerebral Hemodynamics in Ischemic Cerebrovascular Disease. Ann Neurol 1990; (29): 231-240.

Wirestam R, Andersson L, Østergaard L, Boiling M, Aunola J, Lindgren A, Geijer B, Holta°s S, Sta°hlberg F (2000) Assessment of regional cerebral blood flow by dynamic susceptibility contrast MRI using different deconvolution techniques. Magn Reson Med 43:691–700.

Wu O, Østergaard L, Weisskoff RM, Benner T, Rosen BR, Sorensen AG (2003a) Tracer arrival timing-insensitive technique for estimating flow in MR perfusionweighted imaging using singular value decomposition
with a block-circulant deconvolution matrix. Magn Reson Med 50:164–74.

Wu O, Østergaard L, Koroshetz WJ, Schwamm LH, O’Donnell J, Schaefer PW, Rosen BR, Weisskoff RM, Sorensen AG (2003b) Effects of tracer arrival time on flow estimates in MR perfusion-weighted imaging.Magn Reson Med 50:856–64.

Yamada K, Wu O, Gonzalez G, Bakker D, Østergaard L,Copen WA, Weisskoff RM, Rosen BR, Yagi K, Nishimura T, Sorensen AG (2002) Magnetic resonance perfusion-weighted imaging of acute cerebral infarction: effect of the calculation methods and underlying vasculopathy. Stroke 33:87–94.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top