跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.182) 您好!臺灣時間:2025/10/10 10:53
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:梁璟云
研究生(外文):Chin-Yun Liang
論文名稱:比較咖啡酸苯乙酯在活體內或活體外條件中對氣喘小鼠肺部與脾臟免疫功能之調節機制
論文名稱(外文):Immunomodulatory Effects of Caffeic Acid Phenethyl Ester on Lung and Spleen Function in Murine Asthma in vivo or ex vivo
指導教授:吳文勉
指導教授(外文):Wen-Mein Wu
學位類別:碩士
校院名稱:輔仁大學
系所名稱:營養科學系
學門:醫藥衛生學門
學類:營養學類
論文種類:學術論文
論文出版年:2006
畢業學年度:95
語文別:中文
論文頁數:76
中文關鍵詞:咖啡酸苯乙酯呼吸道發炎嗜酸性白血球脾臟CD4+ T細胞
外文關鍵詞:caffeic acid phenethyl esterairway inflammationeosinophilssplenocyte CD4+ T cells
相關次數:
  • 被引用被引用:0
  • 點閱點閱:803
  • 評分評分:
  • 下載下載:271
  • 收藏至我的研究室書目清單書目收藏:3
氣喘為慢性呼吸道發炎疾病,為免疫系統中TH1/ TH2類型細胞激素分泌不平衡所導致,其中一病理機制為TH2細胞所分泌之IL-5活化並吸引嗜酸性白血球浸潤至支氣管發炎部位,釋出更多的促發炎物質,加劇呼吸道發炎情形。雖然臨床上常使用類固醇藥物減緩發炎情況以改善病情,但是藥物的長期或不當使用往往伴隨副作用的產生。本實驗室先前研究發現卵白蛋白(ovalbumin, OVA)致敏之呼吸道發炎模式小鼠,餵予蜂膠當中的活性物質,咖啡酸苯乙酯(caffeic acid phenethyl ester, CAPE),連續五天(5, 10 or 20 mg/kg BW),可減少呼吸道發炎小鼠體內嗜酸性白血球浸潤至肺部發炎部位,增加脾臟中分泌IFN-γ細胞激素之細胞百分比,並且抑制脾臟細胞培養上清液中IL-5細胞激素分泌量,推測CAPE可能具有免疫調節之功效,而達到緩和呼吸道發炎小鼠之氣喘症狀。因此本論文欲以OVA致敏呼吸道發炎小鼠之研究模式,釐清CAPE改善呼吸道發炎之可能機制。實驗將呼吸道發炎小鼠於致敏後連續給予五天CAPE(20 mg/kg BW)或氣喘治療藥物prednisolone(5 mg/kg BW),發現CAPE可顯著降低呼吸道發炎小鼠之呼吸道阻力反應(airway hyperresponsiveness, AHR),且效果幾乎等同於藥物組,雖然CAPE也可顯著降低BALF中嗜酸性白血球之百分比,但是對於BALF中嗜酸性白血球實際細胞數、細胞激素IL-5分泌量、血清中總IgE和OVA特異性IgE生成量則無顯著影響。將呼吸道發炎小鼠純化出脾臟CD4+ T細胞,給予PMA-ionomycin刺激培養,結果發現餵予CAPE可顯著降低呼吸道發炎小鼠脾臟CD4+ T細胞於刺激下分泌IL-10和TGF-β1,而IL-5、IFN-γ分泌量與CD4+ T細胞增生反應和呼吸道發炎小鼠相比無顯著差異。若將呼吸道發炎小鼠脾臟CD4+ T細胞和CAPE(1, 2.5 or 5 μg/mL)進行體外培養,於PMA-ionomycin刺激下,隨著CPAE培養濃度愈高,CAPE對於細胞激素IL-5、IFN-γ和IL-10分泌量之抑制效果愈加顯著。為了進一步確認CAPE是否直接作用於嗜酸性白血球,將呼吸道發炎小鼠BALF細胞和不同濃度CAPE進行體外培養,在不影響細胞存活率和細胞數的前提下,CAPE可顯著降低嗜酸性白血球於BALF中所佔之百分比,但對於ConA刺激下之IL-5分泌量則無影響。綜合上述,呼吸道發炎小鼠於致敏後餵予CAPE有較佳之改善效果,推測CAPE直接或間接(CAPE代謝衍生物)藉由降低呼吸道發炎小鼠AHR反應、降低嗜酸性白血球浸潤至肺部或誘導嗜酸性白血球細胞凋亡,亦或者藉由調控脾臟CD4+ T細胞分泌IL-5,因而降低嗜酸性白血球趨化至肺部。所以CAPE或許具有輔佐氣喘治療藥物使用之能力,但是未來仍需更多的研究證明其調控機制。
Asthma is a chronic airway inflammation disease caused by the TH1/ TH2 cytokines secretion imbalance. One of the mechanisms is IL-5 secreted by TH2 cells activating eosinophils infiltration to airway inflammation site, and to release more pro-inflammatory mediators aggravating symptoms. In clinical, steroids are often used to improve inflammation, but long term or improper dependence on drugs would follow some complications. Previous study shown OVA (ovalbumin)-immunized airway inflammatory mice model fed with 5, 10 or 20 mg/kg BW caffeic acid phenethyl ester (CAPE), the active compound in propolis, for continuous 5 days. The CAPE could reduce eosinohilia in bronchoalveolar lavage fluids (BALF), increased the percentage of IFN-γ-secreting cell in splenocyte, and inhibited IL-5 secretion in splenocyte cultured supernatant. Therefore, we suggested CAPE has immunomodulatory activity on attenuating airway inflammatory mice. In this thesis, we would like to use OVA-immunize airway inflammatory mice model to clarify the possible mechanism on attenuating airway inflammation. We fed CAPE (20 mg/kg BW) or prednisolone (5 mg/kg BW), the asthma therapy medicine, to airway inflammatory mice after immunization for continuous five days. Our data shown that CAPE could significantly reduce airway hyperresponsiveness (AHR) to methacholine in airway inflammatory mice as low as the AHR of mice fed with prednisolone. Although the eosinophil percentage in BALF significantly suppressed by CAPE treatment, there had no effects on the eosinophil absolute numbers, IL-5 secretion, serum total IgE and OVA-specific IgE production. In order to understanding if CAPE regulated splenocyte CD4+ T cell to secret IL-5 that caused IL-5 reduction in BALF. We isolated CD4+ T cell from splenocyte in airway inflammatory mice fed with CAPE or prednisolone for continuous five days. After stimulating with PMA-ionomycin, the IL-10 and TGF-β1 secretion were significantly suppressed by CAPE. But the IL-5, IFN-γ secretion and CD4+ T cell proliferation had no effects compared to the asthma group. However, the ex vivo study shown that PMA-ionomycin-stimulated CD4+ T cell isolated from airway inflammatory mice incubated with different concentrations of CAPE (1, 2.5 or 5 μg/mL) suppressed the IL-5, IFN-γ and IL-10 secretion in a dose-dependent manner. In order to concern whether CAPE may affect on eosinophil directly, we incubated BALF cell collected from airway inflammatory mice with different concentration of CAPE ex vivo. Our data shown that CAPE could significantly reduce eosinophil percentage in BALF cells, but there had no effects on cell viability, numbers, and the secretion levels of IL-5 as cell been stimulated by Con A. In conclusion, according to our study design, the proper effect on improving airway inflammatory mice was fed with CAPE after OVA-immunization. We suggested that CAPE may attenuating airway inflammation on reducing AHR reaction, suppressing eosinophil infiltration to airway, inducing eosinophil apoptosis, or regulating splenocyte CD4+ T cell to secret IL-5, directly or indirectly (through some metabolic derivatives of CAPE). CAPE maybe used to an adjuvant for asthma therapy, however, there more studies are needed to demonstrate the regulatory mechanism in the future.
中文摘要............................................ I
英文摘要............................................ III

縮寫表.............................................. VI

第一章 前言............................................ 1
第二章 文獻回顧
第一節 呼吸道發炎反應
2.1.1 免疫反應......................................... 3
2.1.2 輔助型T細胞之調節................................. 3
2.1.3 發炎媒介物質...................................... 4
第二節 咖啡酸苯乙酯
2.2.1 咖啡酸苯乙酯簡介.................................. 5
2.2.2 咖啡酸苯乙酯之生物活性............................. 6
2.2.3 咖啡酸苯乙酯對T細胞調節之影響....................... 8
第三節 嗜酸性白血球
2.3.1 嗜酸性白血球在呼吸道發炎中扮演之角色................. 8
2.3.2 細胞激素對嗜酸性白血球之調節........................ 9
2.3.3 嗜酸性白血球與呼吸道重組........................... 10
2.3.4 抑制嗜酸性白血球活性之藥物.......................... 11
第四節 氣喘治療藥物
2.4.1 常見氣喘藥物...................................... 12
2.4.2 氣喘藥物之作用機制................................. 12
第三章 研究動機與目的.................................... 14
第四章 呼吸道發炎模式小鼠餵食CAPE對肺功能之影響
第一節 材料方法
4.1.1 試驗物質......................................... 16
4.1.2 建立呼吸道發炎模式小鼠............................. 17
4.1.3 實驗分組......................................... 18
4.1.4 呼吸道阻力值測試.................................. 19
4.1.5 血清OVA特異性IgE抗體之測定......................... 20
4.1.6 收集肺部沖洗液.................................... 21
4.1.7 Liu’s staining.................................. 21
4.1.8 細胞激素之測定.................................... 21
4.1.9 統計分析......................................... 22
第二節 結果
4.2.1 CAPE對呼吸道發炎小鼠呼吸道阻力值之影響............... 22
4.2.2 CAPE對呼吸道發炎小鼠肺部沖洗液嗜酸性白血球之影響..... 23
4.2.3 CAPE對呼吸道發炎小鼠肺部沖洗液細胞激素IL-5之影響..... 25
4.2.4 CAPE對呼吸道發炎小鼠血清OVA特異性IgE之影響.......... 26
第三節 討論............................................. 28
第五章 呼吸道發炎小鼠餵食CAPE對脾臟細胞分泌細胞激素之影響
第一節 材料方法
5.1.1 試驗物質......................................... 31
5.1.2 建立呼吸道發炎模式小鼠............................. 31
5.1.3 實驗分組......................................... 31
5.1.4 脾臟細胞之取得.................................... 32
5.1.5 純化CD4+ T細胞................................... 32
5.1.6 細胞表面抗原分析.................................. 33
5.1.7 活體外試驗部分.................................... 33
5.1.8 MTT assay....................................... 34
5.1.9 細胞激素測定...................................... 35
5.1.10 統計分析......................................... 35
第二節 結果
5.2.1 CAPE對呼吸道發炎小鼠CD4+ T脾臟細胞細胞增值之影響..... 35
5.2.2 CAPE對呼吸道發炎小鼠CD4+ T脾臟細胞於PMA-ionomycin
刺激下分泌細胞激素之影響........................... 37
5.2.3 純化自呼吸道發炎小鼠CD4+ T脾臟細胞與不同濃度CAPE
共同培養對PMA-ionomycin刺激下分泌細胞激素之影響..... 38
第三節 討論............................................. 42
第六章 CAPE對呼吸道發炎小鼠肺部嗜酸性白血球與細胞激素之影響
第一節 材料方法
6.1.1 試驗物質......................................... 44
6.1.2 建立呼吸道發炎模式小鼠............................. 45
6.1.3 收集肺部沖洗液.................................... 45
6.1.4 活體外培養........................................ 45
6.1.5 Liu’s staining..................................46
6.1.6 細胞激素測定...................................... 46
6.1.7 統計分析......................................... 46
第二節 結果
6.2.1 CAPE對肺部沖出細胞細胞存活率之影響.................. 46
6.2.2 CAPE與肺部沖出細胞共同培養後對各類細胞族群消長之影
響.............................................. 46
6.2.3 CAPE對肺部沖出細胞培養於Con A刺激下分泌IL-5之影響... 48
第三節 討論............................................. 51
第七章 總結............................................. 52
第八章 參考文獻......................................... 53

附錄一 常用試劑與配製方法................................. 64
附錄二 自人類週邊血中純化嗜酸性白血球...................... 66
吳玉琳(2003)蜂膠對氣喘模式實驗小鼠之免疫調節功效。輔仁大學食品營養學系碩士論文。

邱巧絨(2005)咖啡酸苯乙酯對氣喘孩童週邊血液淋巴球之免疫調節,私立輔仁大學食品營養學系碩士論文。

侯欣妙(2004)探討咖啡酸苯乙酯對卵白蛋白致敏呼吸道發炎小鼠之調節機制,私立輔仁大學食品營養學系碩士論文。

謝貴雄(1995)小兒氣喘病之預防和處裡。中華民國小兒科醫學會雜誌,36:S9-20。

Adachi T and Alam R (1998) The mechanism of IL-5 signal transduction. Am J Physiol 275: C623-626.

Adachi T, Choudhury BK, Stafford S, Sur S and Alam R (2000) The differential role of extracellular signal-regulated kinases and p38 mitogen-activated protein kinase in eosinophil functions. J Immunol 165:2198-2204.

Akdis CA, Joss A, Akdis M, Faith A and Blaser K (2000) A molecular basis for T cell suppression by IL-10: CD28-associated IL-10 receptor inhibits CD28 tyrosine phosphorylation and phosphatidylinositol 3-kinase binding. FASEB J 14:1666-1668.

Alam R, York Jm Boyars M, Stafford S, Grant JA, Lee J, For-sythe P, Sim T and Ida N (1996) Increased MCP-1, RANTES and MIP-1α in bronchoalveolar lavage fluid of allergic asthmatic patients. Am J Respir Crit Care Med 153:1398-1404.

Ansorge S, Reinhold D and Lendeckel U (2003) Propolis and some of its constituents down-regulate DNA synthesis and inflammatory cytokine production but induce TGF-beta 1 production of human immune cells. Z Naturforsch [C] 58:580-589.

Aydogdu N, Atmaca G, Yalcin O, Batcioglu K and Kaymak K (2004) Effects of caffeic acid phenethyl ester on glycerol-induced acute renal failure in rats. Clin Exp Pharmacol Physiol 31:575-579.

Azzawi M, Johnston PW, Majumdar S, Kay AB and Jeffery PK (1992) T lymphocytes and activated eosinophils in airway mucosa in fatal asthma and cystic fibrosis. Am Rev Respir Dis 145:1477-1482.

Berstedt-Lingqvist S, Moon HB, Resson U, Moller G, Heusser CH and Severinson E (1988) IL-4 instructs uncommitted B lymphocytes to switch to IgG1 and IgE. Eur J Immunol 18:1073-1077.

Bielory L and Lupoli K (1999) Herbal interventions in asthma and allergy. J Asthma 36:1-65.

Boom WH, Liano D and Abbas AK (1988) Heterogeneity of helper/inducer T lymphocytes. II. Effects of interleukin 4- and interlukin 2-producing T cell clones on resting B lymphocytes. J Exp Med 167:1350-1363.

Borreli F, Maffia P, Pinto L, Ianaro A, Russo A, Capasso F and Ialenti A (2002) Phytochemical compounds involved in the anti-inflammatory effect of propolis extract. Fitoterapia 73:53-63.

Bradley BL, Azzawi M, Jacobson M, Assoufi B, Collins JV, Irani AM, Schwartz LB, Durham SR, Jeffery PK and Kay AB (1991) Eosinophils, T-lymphocytes, mast cells, neutrophils, and macrophages in bronchial biopsy specimens from atopic subjects with asthma and normal control subjects and relationship to bronchial hyperresponsiveness. J Allergy Clin Immunol 88:661-674.

Busse W, Elias J, Sheppard D and Banks-Schlegel S (1999) Airway remodeling and repair. Am J Respir Crit Care Med 160:1035-1642.

Chen JH, Shao Y, Huang MT, Chin CK and Ho CT (1996) Inhibitory effect of caffeic acid phenethyl ester on human leukemia HL-60 cells. Cancer Lett 108:211-214.

Chen Y, Kuchroo VK, Inobe J, Hafler DA and Weiner HL (1994) Regulatory T cell clones induced by oral tolerance: suppression of autoimmune encephalomyelitis.
Science 265:1237-1240.

Chen YJ, Shiao MS and Wang SY (2001) The antioxidant caffeic acid phenethyl ester induces apoptosis associated with selective scavenging of hydrogen peroxide in human leukemic HL-60 cells. Anticancer Drugs 12:143-149.

Cher DJ and Mosmann TR (1987) Two types of murine helper T cell clone. II. Delayed-type hyperseneitivity is mediated by TH1 clones. J Immunol 138:3688-3694.

Chung TW, Moon SK, Chang YC, Ko JH, Lee YC, Cho G, Kim SH, Kim JG and Kim CH (2004) Novel and therapeutic effect of caffeic acid and caffeic acid phenethyl ester on hepatocarcinoma cells: complete regression of hepatoma growth and metastasis by dual mechanism. FASEB J 18:1670-1681.

Clutterbuck EJ, Hirst EM and Sanderson CJ (1989) Human interleukin-5 (IL-5) regulates the production of eosinophils in human bone marrow cultures: comparison and interaction with IL-1, IL-3, IL-6, and GMCSF. Blood 73:1504-1512.

Dent LA, Strath M, Mellor AL and Sanderson CJ (1990) Eosinophilia in transgenic mice expressing interleukin 5. J Exp Med 172:1425-1431.

Demae M, Sagara H, Sakaue M, Fukuda T and Kamikawa Y (2003) The antiallergic drug oxatomide promotes human eosinophil apoptosis and suppresses IL-5-induced eosinophil survival. J Allergy Clin Immunol 111:567-572.

Dong Q, Louahed J, Vink A, Sullivan CD, Messler CJ, Zhou YH, Haczku A, Huaux F, Arras M, Holroyd KJ, Renauld JC, Levitt RC and Nicolaides NC (1999) IL-9 induces chemokine expression in lung epithelial cells and baseline airway eosinophilia in transgenic mice. Eur J Immunol 29:2130-2139.

Durham SR, Loegering DA, Dunnette S, Gleich GJ and Kay AB (1989) Blood eosinophils and eosinophil-derived proteins in allergic asthma. J Allergy Clin Immunol 84:931-936.

Erb KJ and Le Gros G (1996) The role of Th2 type CD4+ T cells and Th2 type CD8+ T cells in asthma. Immunol Cell Biol 74:206-208.

Fesen MR, Pommier Y, Leteurtre F, Hiroguchi S, Yung J and Kohn KW (1994) Inhibition of HIV-1 integrase by flavones, caffeic acid phenethyl ester (CAPE) and related compounds. Biochem Pharmacol 48:595-608.

Fitzgerald SM, Chi DS, Lee SA, Hall K and Krishnaswamy G (2004) Inhibition of GM-CSF production in fibroblast-monocyte coculture by prednisolone and effects of rhGM-CSF on human lung fibroblast. Front Biosci 9:342-348.

Foster PS, Hogan SP, Ramsay AJ, Matthaei KI and Young IG (1996) Interleukin 5 deficiency abolishes eosinophilia, airways hyperreactivity, and lung damage in a mouse asthma model. J Exp Med 183:195-201.

Gabrielsson S, Paulie S, Roquet A, Ihre E, Lagging E, van Hage-Hamsten M, Harfast B and Troye-Blomberg M (1997) Increased allergen-specific Th2 responses in vitro in atopic subjects receving subclinical allergen challenge. Allergy 52:860-865.

Gerlier D and Thomasset N (1986) Use of MTT colorimetric assay to measure cell activation. J Immunol Methods 94:57-63.

Gleich GJ (1990) The eosinophil and bronchial asthma: current understanding. J Allergy Clin Immunol 85:422-436.

Gounni AS, Nutku E, Koussih L, Aris F, Louahed J, Levitt RC, Nicolaides NC and Hamid Q (2000) IL-9 expression by human eosinophils: regulation by IL-1β and TNF-α. J Immunol 163:403-411.

Groux H, O'Garra A, Bigler M, Rouleau M, Antonenko S, de Vries JE and Roncarolo MG (1997) A CD4+ T-cell subset inhibits antigen-specific T-cell responses and prevents colitis. Nature 389:737-742.

Gurel A, Armutcu F, Hosnuter M, Unalacak M, Kargi E and Altinyazar C (2004) Caffeic acid phenethyl ester improves oxidative organ damage in rat model of thermal trauma. Physiol Res 53:675-682.

Hamelmann E, Schwarze J, Takeda K, Oshiba A, Larsen GL, Irvin CG and Gelfand EW (1997) Noninvasive measurement of airway responsiveness in allergic mice using barometric plethysmography. Am J Respir Crit Care Med 156:766-775.

Iwashita H, Morita S, Sagiya Y and Nakanishi A (2006) Role of eosinophil chemotactic factor by T lymphocytes on airway hyperresponsiveness in a murine model of allergic asthma. Am J Respir Cell Mol Biol 35:103-109.

Jang AS, Choi IS, Koh YI, Jeong TK, Lee KY, Kim YS, Lee JU and Park CS (2000) Effects of prednisolone on eosinophils, IL-5, eosinophil cationic protein, EG2+ eosinophilsm and nitric oxide metabolites in the sputum of patients with exacerbated asthma. J Korean Med Sci 15:521-528.

Jutel M, Akdis M, Budak F, Aebischer-Casaulta C, Wrzyszcz M, Blaser K and Akdis CA (2003) IL-10 and TGF-beta cooperate in the regulatory T cell response to mucosal allergens in normal immunity and specific immunotherapy. Eur J Immunol 33:1205-1214.

Kao ST, Lin CS, Hsieh CC, Hsieh WT and Lin JG (2001) Effects of Xiao-Qing-Long-Tang (XQLT) on bronchoconstriction and airway eosinophil infiltration in ovalbumin-sensitized guinea pigs: in vivo and in vitro studies. Allergy 56:1164-1171.

Kao ST, Yeh TJ, Hsieh CC, Shiau HB, Yeh FT and Lin JG (2001) The effects of Ma-Xing-Gan-Shi-Tang on respiratory resistance and airway leukocyte infiltration in asthmatic guinea pigs. Immunopharmacol Immunotoxicol 23:445-458.

Kay AB (1983) Mediators of hypersensitivity and inflammatory cells in the pathogenesis of bronchial asthma. Eur J Respir Dis Suppl 129:1-44.

Konduri KS, Nandedkar S, Duzgunes N, Suzara V, Artwohl J, Bunte R and Gangadharam PR (2003) Efficacy of liposomal budesonide in experimental asthma. J Allergy Clin Immunol 111:321-327.

Kurrashima K, Fujimura M, Myou S, Kasahara K, Tachibana H, Amemiya N, Ishiura Y, Onai N, Matsushima K and Nakao S (2001) Effects of oral steroids on blood CXCR3+ and CCR4+ T cells in patients with bronchial asthma. Am J respire Crit Care Med 164:754-758.

Lee JJ, McGarry MP, Farmer SC, Denzler KL, Larson KA, Carrigan PE, Brenneise IE, Horton MA, Haczku A, Gelfand EW, Leikauf GD and Lee NA (1997) Interleukin-5 expression in the lung epithelium of transgenic mice leads to pulmonary changes pathognomonic of asthma. J Exp Med 185:2143-2156.

Lefort J, Bachelet CM, Ledec D and Vargaftig BB (1996) Effect of antigen provocation of IL-5 transgenic mice on eosinophil mobilization and bronchial hyperresponsiveness. J Allergy Clin Immunol 97:788-799.

Leung SY, Eynott P, Nath P and Chung KF (2005) Effects of ciclesonide and fluticasone propionate on allergen-induced airway inflammation and remodeling features. J Allergy Clin Immunol 115:989-996.

Linard C, Marquette C, Mathieu J, Pennequin A, Clarencon D and Mathe D (2004) Acute induction of inflammatory cytokine expression after gamma-irradiation in the rat: effect of an NF-kappaB inhibitor. Int J Radiat Oncol Biol Phys 58:427-434.

Lopez AF, Sanderson CJ, Gamble JR, Campbell HD, Young IG and Vadas MA (1988) Recombinant human interleukin 5 is a selective activator of human eosinophil function. J Exp Med 167:43-56.

Márquez N, Sancho R, Macho A, Calzado MA, Fiebich BL and Muñoz E (2004) Caffeic acid phenethyl ester inhibits T-cell activation by targeting both nuclear factor of activated T cell and NF-κB transcription factors. J Pharmacol Exp Ther 308:993-1001.

Martin LB, Kita H, Leiferman KM and Gleich GJ (1996) Eosinophils in allergy: role in disease, degranulation, and cytokines. Int Arch Allergy Immunol 109:207-215.

Menzies-Gow A and Robinson DS (2001) Eosinophil chemokines and chemokine receptors: Their role in eosinophil accumulation and activation in asthma and potential as therapeutic target. J Asthma 38:605-613.

Michaluart P, Masferrer JL, Carothers AM, Subbaramaiah K, Zweifel BS, Koboldt C, Mestre JR, Grunberger D, Sacks PG, Tanabe T and Dannenberg AJ (1999) Inhibitory effects of caffeic acid phenethyl ester on the activity and expression of cyclooxygenase-2 in human oral epithelial cells and in a rat model of inflammation. Cancer Res 59:2347-2352.

Mirzoeva OK and Calder PC (1996) The effect of propolis and its components on eicosanoid production during the inflammatory response. Prostaglandins Leukot Essent Fatty Acids 55:441-449.

Mirzoeva OK, Yaqoob P, Knoz KA and Calder PC (1996) Inhibition of ICE-family cysteine proteases rescues murine lymphocytes from lipoxygenase inhibitor-induced apoptosis. FEBS Lett 396:266-270.

Montpied P, de Bock F, Rondouin G, Niel G, Briant L, Courseau AS, Lerner-Natoli M and Bockaert J (2003) Caffeic acid phenethyl ester (CAPE) prevents inflammatory stress in organotypic hippocampal slice cultures. Brain Res Mol Brain Res 115:111-120.

Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65:55-63.

Nagaoka T, Banskota AH, Tezuka Y, Harimaya Y, Koizumi K, Saiki I and Kadota S (2003) Inhibitory effects of caffiec acid phenethyl ester analogues on experimental lung metastasis of murine colon 26-L5 carcinoma cells. Biol Pharm Bull 26:638-641.

Noguchi H, Kephart GM, Colby TV and Gleich GJ (1992) Tissue eosinophilia and eosinophil degranulation in syndromes associated with fibrosis. Am J Pathol 140:521-528.

Ohno I, Nitta Y, Yamauchi K, Hoshi H, Honma M, Woolley K, O'Byrne P, Tamura G, Jordana M and Shirato K (1996) Transforming growth factor beta 1 (TGF beta 1) gene expression by eosinophils in asthmatic airway inflammation. Am J Respir Cell Mol Biol 15:404-409.

Ohno I, Nitta Y, Yamauchi K, Hoshi H, Honma M, Woolley K, O'Byrne P, Dolovich J, Jordana M and Tamura G (1995) Eosinophils as a potential source of platelet-derived growth factor B-chain (PDGF-B) in nasal polyposis and bronchial asthma. Am J Respir Cell Mol Biol 13:639-647.

Okayama Y, Petit-Frere C, Kassel O, Semper A, Quint D, Tunon-de-Lara MJ, Bradding P, Holgate ST and Church MK (1995) IgE-dependent expression of mRNA for IL-4 and IL-5 in human lung mast cells. J Immunol 155:1796-1808.

Orban Z, Mitsiades N, Burke TR Jr, Tsokos M and Chrousos GP (2004) Caffeic acid phenethyl ester induces leukocyte apoptosis, modulates nuclear factor-kappa B and suppresses acute inflammation. Neuroimmunomodulation 7:99-105.

Orsolic N, Knezevic AH, Sver L, Terzic S and Basic I (2004) Immunomodulatory and antimetastatic action of propolis and related polyphenolic compounds. J Ethnopharmacol. 94:307-315.

Owhashi M, Arita H and Hayai N (2000) Identification of a novel eosinophil chemotactic cytokine (ECF-L) as a chitinase family protein. J Biol Chem 275:1279-1286.

Park JH, Lee JK, Kim HS, Chung ST, Eom JH, Kim KA, Chung SJ, Paik SY and Oh HY (2004) Immunomodulatory effect of caffeic acid phenethyl ester in Balb/c mice. Int Immunopharmacol 4:429-436.

Pincus SH, Ramesh KS and Wyler DJ (1987) Eosinophils stimulate fibroblast DNA synthesis. Blood 70:572-574.

Ramos-Barbón D, Presley JF, Hamid QA, Fixman ED and Martin JG (2005) Antigen-specific CD4+ T cell drive airway smooth muscle remodeling in experimental asthma. J Clin Invest 115:1580-1589.

Rankin JA, Picarella DE, Geba GP, Temann UA, Prasad B, DiCosmo B, Tarallo A, Stripp B, Whitsett J and Flavell RA (1996) Phenotypic and physiologic characterization of transgenic mice expressing interleukin 4 in the lung: lymphocytic and eosinophilic inflammation without airway hyperreactivity. Proc Natl Acad Sci USA 93:7821-7825.

Rankin SM, Conroy DM and Williams TJ (2000) Eotaxin and eosinophil recruitment: implication for human disease. Mol Med Today 6:20-27.

Resnick MB and Weller PF (1993) Mechanisms of eosinophil recruitment. Am J Respir Cell Mol Biol 8:349-355.

Russo A, Longo R and Vanella A (2002) Antioxidant activity of propolis: role od caffeic acid phenethyl ester and galangin. Fitoterapia 73:21-29.

Salvi S, Semper A, Blomberg A, Holloway J, Jaffar Z, Papi A, Teran L, Polosa R, Kelly F, Sandatrom T, Holgate S and Frew A (1999) interleukin-5 production by human airway epithelial cells. Am J Respir Cell Mol Biol 20:984-991.

Samoszuk M (2006) Isolation of human eosinophil from peripheral blood using hypotonic lysis and centrifugation. Am J Hematol 81:552-553.

Sanderson CJ (1992) Interleukin-5, eosinophils, and disease. Blood 79:3101-3109.

Shalit M, Sekhsaria S and Malech HL (1995) Modulation of growth and differentiation of eosinophils from human peripheral blood CD34+ cells by IL5 and other growth factors. Cell Immunol 160:50-57.

Simon HU, Yuosefi S, Schranz C, Schapowal A, Bachert C and Blaser K (1997) Direct demonstration of delayed eosinophil apoptosis as a mechanism causing tissue eosinophilia. Immunology 158:3902-3908.

Stevens RL and Austen KF (1989) Recent advances in the cellular and molecular biology of mast cells. Immunol Today 10:381-386.

Stevens TL, Bossie A, Sanders VM, Fernandez-Botran R, Coffman RL, Mosmann TR and Vitetta ES (1988) Regulation of antibody isotype secretion by subsets of antigen-specific helper T cells. Nature 334:255-258.

Stout RD and Bottomly K (1989) Antigen-specific activation of effector macrophages by IFN-gamma producing (TH1) T cell clones. Failure of IL-4-producing(TH2) T cell clones to activate effector function in macrophages. J Immunol 142:760-765.

Sugita M, Kuribayashi K, Nakagomi T, Miyata S, Matsuyama T and Kitada O (2003) Allergic bronchial asthma: airway inflammation and hyperresponsiveness. Intern Med 42:636-643.

Sy LB, Wu YL, Chiang BL, Wang YH and Wu WM (2006) Propolis extracts exhibit an immunoregulatory activity in an OVA-sensitized airway inflammatory animal model. Int Immunopharmacol 6:1053-1060.

Takizawa T, Kawada N, Tanaka H and Nagai H (2002) Effect of antiallergic drugs on Interleukin 5-induced eosinophil infiltration of rat airways. Biol Pharm Bull 25:318-322.

Tanaka H, Komai M, Nagao K, Ishizaki M, Kajiwara D, Takatsu K, Delespesse G and Nagai H (2004) Role of interleukin-5 and eosinophils in allergen-induced airway remodeling in mice. Am J Respir Cell Mol Biol 31:62-68.

Tanaka Y, Delaporte E, Dubucquoi S, Gounni AS, Porchet E, Capron A and Capron M (1994) Interluekin-5 messenger RNA and immunoreactive protein expression by activated eosinophils in lesional atopic dermatitis skin. J Invest Dermatol 103:589-592.

Tang RB and Chen SJ (2001) Serum levels of eosinophil cationic protein and eosinophils in asthmatic children during a course of prednisolone therapy. Pediatr Pulmonol 31:121-125.

Tavernier J, Van der Heyden J, Verhee A, Brusselle G, Van Ostade X, Vandekerckhove J, North J, Rankin SM, Kay AB and Robinson DS (2000) Interleukin 5 regulates the isoform expression of its own receptor alpha-subunit. Blood 95:1600-1607.

Temann UA, Geba GP, Rankin JA and Flavell RA (1998) Expression of interleukin 9 in the lungs of transgenic mice causes airway inflammation, mast cell hyperplasia, and bronchial hyperresponsiveness. J Exp Med 188:1307-1320.

Tominaga A, Takaki S, Koyama N, Katoh S, Matsumoto R, Migita M, Hitoshi Y, Hosoya Y, Yamauchi S and Kanai Y (1991) Transgenic mice expressing a B cell growth and differentiation factor gene (interleukin 5) develop eosinophilia and autoantibody production. J Exp Med 173:429-437.

Walsh GM, Hartnell A, Wardlaw AJ, Kurihara K, Sanderson CJ and Kay AB (1990) IL-5 enhances the in vitro adhesion of human eosinophils, but not neutrophils, in a leukocyte integrin (CD11/18)-dependent manner. Immunology 71:258-265.

Wang CR, Liu ST, Liu MF, Lee GL, Wang Grm and Chuang CY (1999) The effect of allergen immunotherapy on in vitro Il-4 and IFN-gamma production by peripheral mononuclear cells in house dust-sensitive Chinese patients with bronchial asthma. Asian Pac J Allergy Immunol 17:249-254.

Warren HS, Kinnear BF, Phillips JH and Lanier LL (1995) Production of IL-5 by human NK cells and regulation of IL-5 secretion by IL-4, IL-10, and IL-12. J Immunol 154:5144-5152.

Wenzel SE, Schwartz LB, Langmack EL, Halliday JL, Trudeau JB, Gibbs RL and Chu HW (1999) Evidence that severe asthma can be divided pathologically into two inflammatory subtypes with distinct physiologic and clinical characteristics. Am J Respir Crit Care Med 160:1001-1008.

Yagmurca M, Erdogan H, Iraz M, Songur A, Ucar M and Fadillioglu E (2004) Caffeic acid phenethyl ester as a protective agent against doxorubicin nephrotoxicity in rats. Clin Chim Acta 348:27-34.

Yamaguchi S, Kagoshima M, Kohge S and Terasawa M (1997) Suppressive effects of Y-24180, a long-acting antagonist for platelet-activating factor, on allergic pulmonary eosinophilia in mice. Jpn J Pharmacol 75:129-134.

Yamaguchi Y, Suda T, Suda J, Eguchi M, Miura Y, Harada N, Tominaga A and Takatsu K (1988) Purified interleukin 5 supports the terminal differentiation and proliferation of murine eosinophilic precursors. J Exp Med 167:43-56.

Yoshida M, Aizawa H, Inoue H, Matsumoto K, Koto H, Komori M, Fukuyama S, Okamoto M and Hara N (2002) Effect of suplatast tosilate on airway hyperresponsiveness and inflammation in asthma patients. J Asthma 39:545-552.

Ziment I and Tashkin DP (2000) Alternative medicine for allergy and asthma. J Allergy Clin Immunol 106:603-614.

Zimmerman B, Lanner A, Enander I, Zimmerman RS, Pererson CG and Ahlstedt S (1993) Total blood eosinophils, serum eosinophil cationic protein and eosinophil protein-X in childhood asthma: relation to disease status and therapy. Clin Exp Allergy 23:564-570.

Zhu Z, Homer RJ, Wang Z, Chen Q, Geba GP, Wang J, Zhang Y and Elias JA (1999) Pulmonary expression of interleukin-13 causes inflammation, mucus hypersecretion, subepithelial fibrosis, physiologic abnormalities, and eotaxin production. J Clin Invest 103:779-788.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top