跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.176) 您好!臺灣時間:2025/09/07 05:07
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:王韻婷
研究生(外文):Yun-Ting Wang
論文名稱:Epirubicin及Curcumin自體微乳劑製備與其細胞毒殺作用的評估
論文名稱(外文):Formulation Development of Epirubicin and Curcumin with Self-microemulsifying Drug Delivery System and Its Cytotoxicity Evaluation
指導教授:蔡東榮蔡東榮引用關係
指導教授(外文):Tong-Rong Tsai
學位類別:碩士
校院名稱:高雄醫學大學
系所名稱:藥學研究所
學門:醫藥衛生學門
學類:藥學學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:中文
論文頁數:103
中文關鍵詞:EpirubicinCurcumin自體微乳劑溶離細胞毒殺作用
外文關鍵詞:EpirubicinCurcuminself-microemulsifying drug delivery
相關次數:
  • 被引用被引用:0
  • 點閱點閱:424
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
Epirubicin是目前已被廣泛應用於抗腫瘤的藥物,其為細胞週期非特異性的抗腫瘤藥物,但使用於膀胱內灌注後所產生的治療效果並不 是很理想,一方面是因為部份藥物無法準確的傳送到腫瘤細胞,另一方面是由於灌注的藥物對膀胱會造成刺激性,且一般灌流的藥物停留在膀胱的時間只有2 個小時,又藥物對膀胱黏膜的滲透性不佳,因此限制了藥物滲入腫瘤組織。
Curcumin是生薑中的成分,近年來被廣泛研究及討論,文獻顯示其對於腫瘤的抑制也有顯著的療效,尤其是對於腫瘤細胞的G2/M 期。
因此本實驗的目的為將Epirubicin與Curcumin合併製成自體微乳劑,依Epirubicin和Curcumin不同的物化特性而將其分別均勻溶解於水相和油相中,期望此合併製劑可發揮加乘的治療效果。利用23複因子實驗設計法來探討界面活性劑的比例、輔界面活性劑的種類以及輔界面活性劑的比例對於粒子大小及包埋率的影響,從中選擇出粒徑及包埋率皆為最佳的處方進行後續物化特性的分析。實驗結果顯示出Epirubicin與Curcumin合併製成的自體微乳劑其粒子大小的測定值為150.7 ± 0.29 nm,且包埋率為98.31%,表面電荷的測定值為
-30mV。在體外溶離的實驗數據顯示出此劑型確實可增加Curcumin的釋出累積量達10.08倍及縮短Epirubicin HCl 釋出時間為原先的0.2倍。
進一步將此製劑進行T24人類膀胱癌細胞株的毒殺試驗,並以MTS asssay來評估細胞毒殺的效果,結果顯示Epirubicin與Curcumin合併製成的自體微乳劑相對於原本的Epirubicin HCl之細胞毒殺效果高出5.8倍,表示此合併製劑確實發揮了加乘的細胞毒殺作用,也的確為一值得繼續研究的抗膀胱癌製劑。

Epirubicin was the common drug used for antitumor therapy recently. It was a non-specific cell cycle antitumor drug, but the treatment outcome after intravesical therapy was not satisfied. Because of some parts of the drug were not transferred into cancer cell exactly, and the perfusion of drug irritated and limited the drug retention time inside bladder. The short retention time and poor drug permeability for bladder membrane limited anticancer treatment.
Curcumin was a discussed and investigated widely ingredient of ginger, many reports had shown that Curcumin has significant therapeutic effect for tumor inhibition, especially for G2/M phase of cell cycle.
The purpose of this study is to prepare Epirubicin and Curcumin loaded SMEDDS (self-microemulsifying drug delivery system), along with the different physical and chemical property of Epirubicin and Curcumin, we dissolved Epirubicin and Curcumin in aqueous phase and oil phase separately, expected this combine formulation can bring a synergistic antitumor activity. 2(3) factorial designs was used to estimate the effects of the surfactant adding ratio, co-surfactant type and co-surfactant adding amount on the particle size and the entrapment efficiency. To select the best formulation that had the smallest particle size and the highest entrapment efficiency for the follow up sequence analysis. The data shows that the mean particle size of the Epirubicin and Curcumin loaded microemulsion was 150.7 ± 0.29 nm, and the entrapment efficiency was 98.31 %, zeta potential was -30mV. And the drug release experiments in vitro show that this formulation can increase the accumulated release amount and decrease the release time certainly.
The cytotoxic effects of Epirubicin and Curcumin loaded microemulsion, drug free microemulsion, Curcumin loaded microemulsion, Epirubicin loaded microemulsion and Epirubicin HCl on T24 bladder cancer cell lines were determined by MTS assay. The Epirubicin and Curcumin loaded microemulsion exhibiyed a higher cytotoxicity in T24 cell lines compared to the drug free microemulsion and Epirubicin HCl. In this study, the Epirubicin and Curcumin loaded SMEDDS showed a significant synergistic cytotoxicity, it may worth to explore for bladder cancer treatment.

目錄
表次目錄..................................................................................................IV
圖次目錄....................................................................................................V
中文摘要.................................................................................................VII
英文摘要..................................................................................................IX
壹、緒論.....................................................................................................1
一、前言.................................................................................................1
二、EPIRUBICIN HYDROCHLORIDE的基本概述......................................3
三、CURCUMIN的基本概述...................................................................5
四、高壓均質法簡介.............................................................................9
五、以實驗設計法探討.......................................................................10
六、膀胱癌簡介...................................................................................13
貳、實驗材料及儀器設備......................................................................18
一、實驗材料.......................................................................................18
二、儀器設備.......................................................................................19
三、培養液及緩衝液配置...................................................................21
參、研究方法及進行步驟......................................................................22
一、EPIRUBICIN之HPLC分析方法及檢量線的製作..........................22
(一) Epirubicin層析條件...................................................................22
(二) Epirubicin 檢量線之製作.........................................................23
(三) Epirubicin 定量方法之確效.....................................................23
二、CURCUMIN 之HPLC分析方法及檢量線的製作.........................24
(一) Curcumin 層析條件..................................................................24
(二) Curcumin 檢量線之製作..........................................................25
(三) Curcumin 定量方法之確效......................................................25
三、EPIRUBICIN自體微乳劑的製備.....................................................26
四、複因子試驗設計法.......................................................................28
五、EPIRUBICIN自體微乳劑之物化特性.............................................30
(一) 粒徑大小與表面電位測定分析...............................................30
(二) 型態觀察...................................................................................31
(三) 藥物含量評估...........................................................................31
(四) 示差掃描熱分析.......................................................................32
六、體外溶離試驗...............................................................................33
七、細胞毒殺作用...............................................................................34
肆、結果與討論......................................................................................38
一、藥品之定量分析...........................................................................38
(一) Epirubicin 的定量 .....................................................................38
(二) Curcumin 的定量......................................................................41
二、以實驗設計法探討處方...............................................................44
(一) 實驗設計法之探討...................................................................45
(二) 最佳化處方...............................................................................59
三、EPIRUBICIN自體微乳劑之物化性質評估.....................................60
(一) 粒徑大小分析...........................................................................60
(二) 表面電荷測定...........................................................................61
(三) 穿透式電子顯微鏡觀察...........................................................63
(四) 掃描式熱差分析儀評估...........................................................65
四、體外溶離試驗...............................................................................67
五、細胞毒殺作用之探討...................................................................69
伍、結論...................................................................................................81
陸、參考文獻..........................................................................................83

Agyralides G.G., Dallas P.P., Rekkas D.M. Development and in vitro
evaluation of furosemide transdermal formulations using
experimental design techniques. Int J Pharm 2004;281:35-43.
Ambruosi A., Gelperina S., Khalansky A., Tanski S., Theisen A., Kreuter
J. Influence of surfactants, polymer and doxorubicin loading on the
anti-tumour effect of poly(butyl cyanoacrylate) nanoparticles in a rat
glioma model. J Microencapsul 2006;23:582-592.
Anand P., Sundaram C., Jhurani S., Kunnumakkara A.B., Aggarwal B.B.
Curcumin and cancer: an "old-age" disease with an "age-old"
solution. Cancer Lett 2008;267:133-164.
Bachhav Y.G., Patravale V.B. SMEDDS of glyburide: formulation, in
vitro evaluation, and stability studies. AAPS PharmSciTech
2009;10:482-487.
Bakandritsos A., Zboril R., Bouropoulos N., Kallinteri P., Favretto M.E.,
Parker T.L., Mullertz A., Fatouros D.G. The preparation of
magnetically guided lipid based nanoemulsions using
self-emulsifying technology. Nanotechnology 2010;21:055104.
Borhade V., Nair H., Hegde D. Design and evaluation of
self-microemulsifying drug delivery system (SMEDDS) of
tacrolimus. AAPS PharmSciTech 2008;9:13-21.
Burk K., Kurth K.H., Newling D. Epirubicin in treatment and recurrence
prophylaxis of patients with superficial bladder cancer. Prog Clin Biol
Res 1989;303:423-434.
Cereda S., Passoni P., Reni M., Vigano M.G., Aldrighetti L., Nicoletti R.,
Villa E. The cisplatin, epirubicin, 5-fluorouracil, gemcitabine (PEFG)
regimen in advanced biliary tract adenocarcinoma. Cancer 2010.
Chaghi R., Menorval L.C., Charnay C., Zajac J. Competitive interactions
between components in surfactant-cosurfactant-additive systems. J
Colloid Interface Sci 2010;344:402-409.
Chang L.C., Wu S.C., Tsai J.W., Yu T.J., Tsai T.R. Optimization of
epirubicin nanoparticles using experimental design for enhanced
intravesical drug delivery. Int J Pharm 2009;376:195-203.
Chen C.J., Chuang Y.C., You S.L., Lin T.M., Wu H.Y. A retrospective
study on malignant neoplasms of bladder, lung and liver in blackfoot
disease endemic area in Taiwan. Br J Cancer 1986;53:399-405.
Cheng C.W., Chan S.F., Chan L.W., Chan C.K., Ng C.F., Cheung H.Y.,
Chan S.Y., Wong W.S., Lai F.M., Li M.L. 15-year experience on
intravesical therapy of T1G3 urinary bladder cancer: a conservative
approach. Jpn J Clin Oncol 2004;34:202-205.
Cui J., Yu B., Zhao Y., Zhu W., Li H., Lou H., Zhai G. Enhancement of
oral absorption of curcumin by self-microemulsifying drug delivery
systems. Int J Pharm 2009;371:148-155.
Cui S., Zhao C., Chen D., He Z. Self-microemulsifying drug delivery
systems (SMEDDS) for improving in vitro dissolution and oral
absorption of Pueraria lobata isoflavone. Drug Dev Ind Pharm
2005;31:349-356.
Djekic L., Primorac M. The influence of cosurfactants and oils on the formation of pharmaceutical microemulsions based on PEG-8 caprylic/capric glycerides. Int J Pharm 2008;352:231-239.
Dodde W.I., Maring J.G., Hendriks G., Wachters F.M., Groen H.J., de
Vries E.G., Uges D.R. Determination of epirubicin and its metabolite
epirubicinol in saliva and plasma by HPLC. Ther Drug Monit
2003;25:433-440.
Festing M.F. Guidelines for the design and statistical analysis of
experiments in papers submitted to ATLA. Altern Lab Anim
2001;29:427-446.
Fonseca C., Simoes S., Gaspar R. Paclitaxel-loaded PLGA nanoparticles:
preparation, physicochemical characterization and in vitro
anti-tumoral activity. J Control Release 2002;83:273-286.
Giannantoni A., Di Stasi S.M., Chancellor M.B., Costantini E., Porena M.
New frontiers in intravesical therapies and drug delivery. Eur Urol
2006;50:1183-1193; discussion 1193.
Goel A., Jhurani S., Aggarwal B.B. Multi-targeted therapy by curcumin:
how spicy is it? Mol Nutr Food Res 2008a;52:1010-1030.
Goel A., Kunnumakkara A.B., Aggarwal B.B. Curcumin as "Curecumin":
from kitchen to clinic. Biochem Pharmacol 2008b;75:787-809.
Holm R., Jensen I.H., Sonnergaard J. Optimization of
self-microemulsifying drug delivery systems (SMEDDS) using a
D-optimal design and the desirability function. Drug Dev Ind Pharm 2006;32:1025-1032.
Hu H., Han H.Y., Wang Y.L., Zhang X.P., Chua C.W., Wong Y.C., Wang
X.F., Ling M.T., Xu K.X. The role of Id-1 in chemosensitivity and
epirubicin-induced apoptosis in bladder cancer cells. Oncol Rep 2009;21:1053-1059.
Hwang T.L., Fang C.L., Chen C.H., Fang J.Y. Permeation
enhancer-containing water-in-oil nanoemulsions as carriers for
intravesical cisplatin delivery. Pharm Res 2009;26:2314-2323.
Jin X., Wu X.X., Abdel-Muneem Nouh M.A., Kakehi Y. Enhancement of
death receptor 4 mediated apoptosis and cytotoxicity in renal cell
carcinoma cells by subtoxic concentrations of doxorubicin. J Urol
2007;177:1894-1899.
Kang B.K., Chon S.K., Kim S.H., Jeong S.Y., Kim M.S., Cho S.H., Lee
H.B., Khang G. Controlled release of paclitaxel from microemulsion
containing PLGA and evaluation of anti-tumor activity in vitro and in
vivo. Int J Pharm 2004;286:147-156.
Kincl M., Turk S., Vrecer F. Application of experimental design methodology in development and optimization of drug release method. Int J Pharm 2005;291:39-49.
Koo O.M., Rubinstein I., Onyuksel H. Role of nanotechnology in targeted drug delivery and imaging: a concise review. Nanomedicine 2005;1:193-212.
Kunwar A., Barik A., Mishra B., Rathinasamy K., Pandey R., Priyadarsini
K.I. Quantitative cellular uptake, localization and cytotoxicity of
curcumin in normal and tumor cells. Biochim Biophys Acta
2008;1780:673-679.
Li S., Lin S., Daggy B.P., Mirchandani H.L., Chien Y.W. Effect of HPMC
and Carbopol on the release and floating properties of Gastric
Floating Drug Delivery System using factorial design. Int J Pharm 2003;253:13-22.
Lopez-Beltran A., Luque R.J., Mazzucchelli R., Scarpelli M., Montironi
R. Changes produced in the urothelium by traditional and newer
therapeutic procedures for bladder cancer. J Clin Pathol
2002;55:641-647.
Lu J.L., Wang J.C., Zhao S.X., Liu X.Y., Zhao H., Zhang X., Zhou S.F.,
Zhang Q. Self-microemulsifying drug delivery system (SMEDDS)
improves anticancer effect of oral 9-nitrocamptothecin on human
cancer xenografts in nude mice. Eur J Pharm Biopharm
2008;69:899-907.
Notarbartolo M., Poma P., Perri D., Dusonchet L., Cervello M.,
D''Alessandro N. Antitumor effects of curcumin, alone or in
combination with cisplatin or doxorubicin, on human hepatic cancer
cells. Analysis of their possible relationship to changes in NF-kB
activation levels and in IAP gene expression. Cancer Lett
2005;224:53-65.
Oosterlinck W., Lobel B., Jakse G., Malmstrom P.U., Stockle M.,
Sternberg C. Guidelines on bladder cancer. Eur Urol
2002;41:105-112.
Parris C.N., Masters J.R., Walker M.C., Newman B., Riddle P., English P.
Intravesical chemotherapy: combination with Tween 80 increases
cytotoxicity in vitro. Urol Res 1987;15:17-20.
Plosker G.L., Faulds D. Epirubicin. A review of its pharmacodynamic and
pharmacokinetic properties, and therapeutic use in cancer
chemotherapy. Drugs 1993;45:788-856.
Prakobvaitayakit M., Nimmannit U. Optimization of
polylactic-co-glycolic acid nanoparticles containing itraconazole
using 2(3) factorial design. AAPS PharmSciTech 2003;4:E71.
Rollins S., Schumann G.B. Primary urinary cytodiagnosis of a bladder
small-cell carcinoma. Diagn Cytopathol 1991;7:79-82.
Saika T., Tsushima T., Nasu Y., Miyaji Y., Saegusa M., Takeda K., Kumon
H. Two instillations of epirubicin as prophylaxis for recurrence after
transurethral resection of Ta and T1 transitional cell bladder cancer: a
prospective, randomized controlled study. World J Urol 2010.
Sarker D.K. Engineering of nanoemulsions for drug delivery. Curr Drug
Deliv 2005;2:297-310.
Saunal H., Laget J.P., Alvarado D.E., Delonca E.H. Influence of
homogenization on emulsion stability. Int J Cosmet Sci
1982;4:207-218.
Saupe A., Gordon K.C., Rades T. Structural investigations on
nanoemulsions, solid lipid nanoparticles and nanostructured lipid
carriers by cryo-field emission scanning electron microscopy and
Raman spectroscopy. Int J Pharm 2006;314:56-62.
Shen Z., Shen T., Wientjes M.G., O''Donnell M.A., Au J.L. Intravesical
treatments of bladder cancer: review. Pharm Res 2008;25:1500-1510.
Singh A.K., Chaurasiya A., Singh M., Upadhyay S.C., Mukherjee R.,
Khar R.K. Exemestane loaded self-microemulsifying drug delivery
system (SMEDDS): development and optimization. AAPS
PharmSciTech 2008;9:628-634.
Smart J.D. The basics and underlying mechanisms of mucoadhesion. Adv Drug Deliv Rev 2005;57:1556-1568.
Spernath A., Aserin A. Microemulsions as carriers for drugs and
nutraceuticals. Adv Colloid Interface Sci 2006;128-130:47-64.
Spernath A., Aserin A., Sintov A.C., Garti N. Phosphatidylcholine
embedded micellar systems: enhanced permeability through rat skin.
J Colloid Interface Sci 2008;318:421-429.
Spernath A., Aserin A., Ziserman L., Danino D., Garti N.
Phosphatidylcholine embedded microemulsions: physical properties
and improved Caco-2 cell permeability. J Control Release
2007;119:279-290.
Tan L.B., Chien C.H., Chou Y.H., Wang C.J., Liu L.H., Lee C.J., Huang
C.H., Chiang C.P. [Clinical experience in transitional cell carcinoma
of the urinary bladder]. Taiwan Yi Xue Hui Za Zhi 1987;86:131-136.
Tan L.B., Lin L.M., Huang C.H., Chiang C.P., Chien C.H., Pan C.C.
Antigenic detection and prognosis of patients with transitional cell
carcinoma of the urinary bladder. Urol Int 1989;44:264-271.
Thi T.D., Van Speybroeck M., Barillaro V., Martens J., Annaert P.,
Augustijns P., Van Humbeeck J., Vermant J., Van den Mooter G.
Formulate-ability of ten compounds with different physicochemical
profiles in SMEDDS. Eur J Pharm Sci 2009;38:479-488.
Tian B., Wang Z., Zhao Y., Wang D., Li Y., Ma L., Li X., Li J., Xiao N.,
Tian J., Rodriguez R. Effects of curcumin on bladder cancer cells and
development of urothelial tumors in a rat bladder carcinogenesis
model. Cancer Lett 2008;264:299-308.
Turkeri L., Tanidir Y., Cal C., Ozen H., Sahin H. Comparison of the Efficacy of Single or Double Intravesical Epirubicin Instillation in the
Early Postoperative Period to Prevent Recurrences in
Non-Muscle-Invasive Urothelial Carcinoma of the Bladder:
Prospective, Randomized Multicenter Study. Urol Int 2010.
Tyagi P., Wu P.C., Chancellor M., Yoshimura N., Huang L. Recent
advances in intravesical drug/gene delivery. Mol Pharm
2006;3:369-379.
Wang L., Li X., Zhang G., Dong J., Eastoe J. Oil-in-water nanoemulsions
for pesticide formulations. J Colloid Interface Sci 2007;314:230-235.
Woo J.S., Kim T.S., Park J.H., Chi S.C. Formulation and
biopharmaceutical evaluation of silymarin using SMEDDS. Arch
Pharm Res 2007;30:82-89.
Wu W., Wang Y., Que L. Enhanced bioavailability of silymarin by
self-microemulsifying drug delivery system. Eur J Pharm Biopharm
2006;63:288-294.
Zhao P., Dash A.K. A simple HPLC method using a microbore column for
the analysis of doxorubicin. J Pharm Biomed Anal 1999;20:543-548.
沈明來. 試驗設計學. 1997.175-213.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文