跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.136) 您好!臺灣時間:2025/09/20 04:05
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:羅天佑
研究生(外文):Tien-Yu Lo
論文名稱:高效能互補金屬氧化層半導體式轉導放大器與濾波器於無線通訊與有線系統之應用
論文名稱(外文):High Performance CMOS Transconductors and Gm-C Filters for Wireless Communications and Wireline Systems
指導教授:洪崇智
指導教授(外文):Chung-Chih Hung
學位類別:博士
校院名稱:國立交通大學
系所名稱:電信工程系所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:96
語文別:英文
論文頁數:159
中文關鍵詞:轉導放大器轉導電容式濾波器
外文關鍵詞:transconductorGm-C filter
相關次數:
  • 被引用被引用:0
  • 點閱點閱:475
  • 評分評分:
  • 下載下載:55
  • 收藏至我的研究室書目清單書目收藏:0
近年來低電壓的電路系統需求日益增加,尤其對於系統單晶片的應用更加的明顯。當我們把工作電壓降低,數位電路將能在相同的電路效能下擁有更小的功率消耗;但是對於類比電路而言,整體電路的效能將會受到很大的影響。除此之外,電路的面積將需要被適當的考量,以降低進階多功能式系統單晶片的成本。因此,新穎的類比積體電路技術將是個非常熱門的課題。
新穎的轉導放大器以及無線與有線系統的應用將被介紹於此篇論文。轉導放大器為類比電路中基本的建構方塊。通常此放大器將應用於轉導電容式濾波器、連續時間三角積分調變器、壓控震盪器以及乘法器。首先,我們設計了兩種工作於高速的轉導放大器。於此設計當中,於奈米技術所產生的短通道效應將被討論與消除。結果驗證了此電路將能於高速下維持非常好的效能。
接下來我們討論了一廣泛可調頻寬式的轉導電容式濾波器。此濾波器使用了五階的elliptic形式並設計於非常低的截止頻寬。經由切換電阻的方式,此濾波器將能工作於生醫系統、音訊系統以及部分的無線系統。結果證明了在可調頻寬範圍內,此電路的線性度將能被適當的維持。
三種應用於直接轉換接收器之多模通道選擇濾波器被介紹於此篇論文當中。這些濾波器將涵蓋了2G (GSM)、3G(cdma2000與Wideband CDMA)、藍芽(buletooth)與無線區域網路(IEEE 802.11 a/b/g/n Wireless LANs)。我們依照規格設計特定的轉導放大器,並經由三階的elliptic濾波器的形式加以實現。所設計的結果驗證符合所需的無線系統規範。
最後,兩種高速的濾波器被報告於此篇論文。此高速濾波器接使用了四階equiripple濾波器的形式,以使用於脈衝訊號系統當中。其中之一的濾波器設計於硬碟(HDD)存取系統。同時先進的自動校正電路將被實現,此電路將用來抵抗製程與溫度所產生的變異。另外的濾波器將應用於超寬頻(UWB)系統,經由適當的設計,此電路能工作於低電壓源。
There are growing demands for low-supply circuits and systems. This is especially true for system-on-a-chip application. Switching to use lower power supply voltage, digital circuits do not suffer the degradation of their performances too much. On the other hand, for analog circuits, the circuit performances are strongly affected by the low voltage supply. In addition, the chip area should also be taken into consideration to reduce large costs of advanced multi-function SOC design. Therefore, new design techniques for analog circuits are required to be developed.
In this research work, novel transconductors with the applications to wireless and wireline systems are introduced. The transconductor is a basic building block for analog circuits, such as the Gm-C filter, continuous-time delta sigma modulator, voltage controlled oscillator and multiplier. Two transconductors working at high frequency is developed at first. The short channel effects in the nano-scale technology are discussed and eliminated, and the results show the high performance even at high speed operation.
A wide tuning range Gm-C filter with a 5th-order Elliptic prototype for very low frequency is discussed. Through the use of switching technology, the filter can operate from the biomedical systems and the audio systems to part of wireless systems. The distortion performance maintained over the tuning range is also shown.
Three multi-mode channel section filters for the Zero-IF direct conversion receiver are presented. These filters cover the wireless applications of GSM, bluetooth, cdma2000, wideband CDMA and IEEE 802.11 a/b/g/n Wireless LANs. The specific transconductors with required function are designed. Through the use of a 3th-order Butterworth prototype, the results are shown to meet the specifications of various wireless applications.
Two high speed filters with a 4th-order equiripple prototype are presented. The high speed filter can be used for pulse signal systems. One is designed for the hard disk storage systems. A novel automatic tuning circuit is also implemented to account for process and temperature variations. The other is designed for the UWB system. This circuit can work well under a low supply voltage.
Contents


Abstract
Acknowledgements
List of Tables
List of Figures
1 Motivation 1
1.1 Introduction 1
1.2 Applications 2
1.3 Organization 3
2 Transconductor 4
2.1 Introduction 4
2.2 A review of CMOS transconductor 4
2.2.1 The source degenerated transconductor 4
2.2.2 The constant drain-source transconductor 7
2.2.3 The pseudo-differential transconductor 9
2.2.4 The floating-gate transconductor 11
2.3 A 40MHz double differential-pair CMOS OTA with -60dB IM3 14
2.3.1 Introduction 14
2.3.2 Nonlinearity analysis of saturated MOS transistors 15
2.3.2.1 The floating-gate transconductor 15
2.3.2.2 Saturated MOS transistor in nano-Scale CMOS technology 15
2.3.2.3 Design methodology 18
2.3.3 Proposed OTA circuit 21
2.3.3.1 Implementation of linearization technique 21
2.3.3.2 The common-mode stability 22
2.3.4 Non-ideality analysis of the implementation 24
2.3.4.1 Mismatch 24
2.3.4.2 Thermal noise 24
2.3.5 Experimental results 25
2.3.6 Summary 28
2.3 A 1-V 50MHz pseudo-differential OTA with compensation of the mobility reduction 28
2.4.1 Introduction 29
2.4.2 The proposed transconductor cell 30
2.4.2.1 Mobility compensation 30
2.4.2.2 Proposed OTA implementation 34
2.4.2.3 Nonidealities in the proposed OTA 36
2.4.3 Experimental results 38
2.4.4 Summary 38
3 Gm-C Filter 40
3.1 Introduction 40
3.2 The implementation of the Gm-C filter 40
3.2.1 Integrator 40
3.2.2 Programmable integrator 44
3.2.3 Filter synthesis methods 45
3.2.3.1 Biqued sections 46
3.2.3.2 Signal flow graph 48
3.2.4 Effect of integrator non-idealities in filter 52
3.2.4.1 Non-zero output conductance 52
3.2.4.2 Parasitic poles and zeros 53
3.2.4.3 Noise 55
3.2.4.4 Dynamic range performance 57
3.2.4.4.1 Total harmonic distortion (THD) 57
3.2.4.4.2 The third-order intercept point (IP3) 59
3.2.4.4.3 Spurious-free dynamic range (SFDR) 61
3.3 A wide tuning range Gm-C continuous-time analog filter 62
3.3.1 Introduction 62
3.3.2 The proposed transconductor cell 63
3.3.2.1 Implementation of Linearization Technique 63
3.3.2.1.1 The transconductor cell operating in the weak inversion region 64
3.3.2.1.2 The transconductor cell operating in the strong inversion region 66
3.3.2.1.3 The transconductor cell operating in the multi-inversion regions 69
3.3.2.2 Noise analysis of the proposed transconductor 70
3.3.3 The equivalent resistor REQ 71
3.3.3.1 Switching methodology 71
3.3.3.1.1 Bias current condition 73
3.3.3.1.2 Linearity and noise analyses 86
3.3.4 Filter architecture 77
3.3.5 Experimental results 81
3.3.6 Summary 85
4 Multi-mode channel selection filter for wireless applications 87
4.1 Introduction 87
4.2 Zero-IF receiver 87
4.3 A Gm-C continuous-time analog filter for multi-mode wireless applications 88
4.3.1 Introduction 88
4.3.2 Proposed transconductor circuit 89
4.3.3 The equivalent resistor and the CMFB circuit 90
4.3.3.1 The equivalent resistor 90
4.3.3.2 The CMFB circuit 92
4.3.4 Filter Architecture 93
4.3.5 Results 95
4.3.6 Summary 95
4.4 Multi-mode Gm-C channel selection filter for mobile applications in 1-V supply voltage 96
4.4.1 Introduction 97
4.4.2 Proposed transconductor circuit 98
4.4.2.1 The triode region MOS characteristic 98
4.4.2.2 The transconductor implementation 99
4.4.2.3 The high linearity current multiplier 101
4.4.2.4 The CMFB circuit 103
4.4.3 Filter architecture and measurement result 104
4.4.4 Summary 105
4.5 A wide tuning range Gm-C filter for multi-mode direct-conversion wireless receivers 106
4.5.1 Introduction 106
4.5.2 Proposed transconductor circuit 107
4.5.2.1 The voltage-to-current conversion in CMOS technology 108
4.5.2.2 The proposed transconductor with tuning scheme 110
4.5.2.3 The final circuit implementation 113
4.5.2.4 Nonidealities in the proposed circuit 115
4.5.3 Filter architecture and measurement results 117
4.5.4 Summary 120
5 High speed filter with the automatic tuning circuit 121
5.1 Introduction 121
5.2 Linear phase filter 122
5.2.1 Filter transfer function 122
5.2.2 Group delay sensitivity 123
5.3 Automatic tuning circuit 125
5.3.1 Direct tuning architecture 125
5.3.2 Indirect tuning architecture 126
5.4 A 1 GHz equiripple low-pass filter with a high-speed automatic tuning scheme 129
5.4.1 Introduction 130
5.4.2 Operational transconductance amplifier 130
5.4.2.1 The voltage-to-current conversion 130
5.4.2.2 The common-mode control system 132
5.4.2.3 Gain enhancement and trancsonductance tuning circuit 133
5.4.3 Filter architecture and automatic tuning circuit 134
5.4.4 Measurement results 137
5.4.5 Summary 139
5.5 A 1-V Gm-C low-pass filter for UWB wireless application 140
5.5.1 Introduction 140
5.5.2 Proposed operational transconductance amplifier 141
5.4.3 Common-mode control circuit 144
5.4.4 Filter implementation and measurement results 145
5.4.5 Summary 148
6 Conclusions 150
Bibliography 151
Vita 159
Bibliography

[1] R. H. Dennard, F. H. Gaensslen, H. N. Yu, V. L. Rideout, E. Bassous, and A. R. LeBlanc, “Design of Ion-Implanted MOSFET's With Very Small Physical Dimensions,” IEEE J. Solid-State Circuits, vol. SC-9, pp. 256-268, October 1974.

[2] Y. A. El-Mansy, “On Scaling MOS Devices for VLSI,” IEEE Intl. Conf. on Circuits and Computers, pp. 457-460, 1980.

[3] T. Kuroda and T. Sakurai, “Overview of Low-Power {ULSI} Circuit Techniques,” IEICE Trans. on Electronics, pp. 334-344, April 1995.

[4] J. E. Chung, M. C. Jeng, J. E. Moon, P. K. Ko, and C. Hu, “Performance and Reliability Design Issue for Deep-Submicrometer MOSFET's,” IEEE Transactions on Electron Devices, pp. 545-554, March 1991.

[5] T. H. Ning, P. W. Cook, R. H. Dennard, C. M. Osburn, S. E. Schuster, and H. N. Yu, “1 um MOSFET VLSI Technology: Part IV - Hot-Electron Design Constraints,” IEEE J. Solid-State Circuits, pp. 268-275, April 1979.

[6] C. Hu, S. C. Tam, F. C. Hsu, P. K. Ko, T. Y. Chan, and K. W. Terrill, “Hot-Electron-Induced MOSFET Degradation-Model, Monitor, and Improvement,” IEEE Transactions on Electron Devices, pp. 375-385, February 1985.

[7] R. W. Brodersen, “The Network Computer and Its Future,” in IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, pp. 32-36, February 1997.

[8] H. Yasuda, “Multimedia Impact on Devices in the 21st Century,” in IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, pp. 28-31, February 1997.

[9] M. Ismail and T. Fiez, Analog VLSI Signal and Information Processing. New York: McGraw-Hill, 1994

[10] S. R. Zarabadi, M. Ismail, and C. C. Hung, “High performance analog VLSI computational circuits,” IEEE Journal of Solid-State Circuits, vol.33, no.4, pp. 644-649, Apr. 1998.

[11] C. C. Hung, K. A. Halonen, M. Ismail, V. Porra and A. Hyogo, “A low-voltage, low-power CMOS fifth-Order elliptic GM-C filter for baseband mobile, wireless communication,” IEEE Trans. Circuits Syst. Video Technol., vol. 7, pp. 584-593, Aug., 1997.

[12] T. Y. Lo and C. C. Hung, “A wide tuning range Gm-C continuous-time analog filter,” IEEE Trans. Circuits Syst. I, Reg. Papers., vol. 54, no. 4, pp. 713-722, Apr. 2007.

[13] J. Galan, R. G. Carvajal, A. Torralba, F. Munoz, and J. Ramirez-Angulo, “A low-power low-voltage OTA-C sinusoidal oscillator with a large tuning range,” IEEE Trans. Circuits Syst. I, Reg. Papers., vol. 52, no.2, pp. 283–291, Feb. 2005.

[14] J. van Engelen, R. van de Plassche, E. Stikvoort, and A. Venes, “A sixth-order continuous-time bandpass sigma–delta modulator for digital radio IF,” IEEE J. Solid-State Circuits, vol. 34, pp. 1753–1764, no.12, Dec. 1999.

[15] E. Sánchez-Sinencio and J. Silva-Martínez, “CMOS transconductance amplifiers, architectures and active filters: A tutorial,” Proc. IEE Circuits Devices Syst., vol. 147, no. 1, pp. 3–12, Feb. 2000.

[16] P. Pandey, J. Silva-Martinez, and X. Liu, “A CMOS 140-mW Fourth-Order Continuous-Time Low-Pass Filter Stabilized With a Class AB Common-Mode Feedback Operating at 550 MHz,” IEEE Trans. Circuits Syst. I, Reg. Papers., vol. 53, no.4, pp.811-820, Apr. 2006.

[17] M. Chen, J. Silva-Martínez, S. Rokhsaz, and M. Robinson, “A 2-Vpp 80-200-MHz fourth-order continuous-time linear phase filter with automatic frequency tuning,” IEEE Journal of Solid-State Circuits, vol.38, no.10, pp. 1745-1749, Oct. 2003.

[18] F. Rezzi, A. Baschirotto, and R. Castello, “A 3 V 12–55 MHz BiCMOS pseudo-differential continuous-time filter,” IEEE Trans. Circuits Syst. I, vol. 42, no. 11, pp. 896–903, Nov. 1995.

[19] A. E. Mourabit, G.-N. Lu, and P. Pittet, “Wide-linear-range subthreshold OTA for low-power, low-voltage, and low-frequency applications,” IEEE Trans. Circuits Syst. I, Reg. Papers., vol. 52, no.8, pp. 1481–1488, Aug. 2005.

[20] E. Rodriguez-Villegas, A. Yufera, and A. Rueda,” A 1.25-V micropower Gm-C filter based on FGMOS transistoes operating in weak inversion,” IEEE J. Solid-State Circuits, vol. 39, no.1, pp. 100–111, Jan. 2004.

[21] A. J. Lopez-Martin, S. Baswa, J. Ramirez-Angulo, and R. G. Carvajal, “Low-voltage super class AB CMOS OTA cells with very high slew rate and power efficiency,” IEEE J. Solid-State Circuits, vol. 40, no. 5, pp. 1068–1077, Mar. 2005.

[22] A. Demosthenous and M. Panovic, “Low-voltage MOS linear transconductor/squarer and four-quadrant multiplier for analog VLSI,” IEEE Trans. Circuits Syst. I, Reg. Papers., vol. 52, no.9, pp. 1721–1731, Sep. 2005.

[23] P. Kallam, E. Sánchez-Sinencio and A. Karsilayan, “An enhanced adaptice Q-tuning scheme for a 100MHz fully symmertic OTA-based bandpass filter,” IEEE Journal of Solid-State Circuits, vol. 38, no. 4, pp. 585–593, Apr. 2003.

[24] T. Y. Lo and C. C. Hung, “A high speed and high linearity OTA in 1-V power supply voltage,” in Proc. ISCAS, 2006, pp. 1864–1867.

[25] U. Yodprasit and C. C. Enz, “A 1.5-V 75-dB Dyamic Range Third-Order Gm-C filter Integrated in a 0.18-μm Standard Digital CMOS Process,” IEEE Journal of Solid-State Circuits, vol.38, no.7, pp. 1189-1197, Jul. 2003.

[26] A. Nader Mohieldin, E. Sánchez-Sinencio, and J. Silva-Martínez, “A fully balanced pseudo-differential OTA with common-mode Feedforward and inherent common-mode feedback detector,” IEEE Journal of Solid-State Circuits, vol.38, no.4, pp. 663-668, Apr. 2003.

[27] I. S. Han, “A novel tunable transconductance amplifier based on voltage-controlled resistance by MOS Transistors,” IEEE Trans. Circuits Syst. II, Expr. Briefs., vol. 53, no. 8, pp. 662–666, Aug. 2006.

[28] A. Lewinski. and and J. Silva-Martínez, “OTA linearity enhancement technique for high frequency applications with IM3 below -65 dB,” IEEE Trans. Circuits Syst. II, vol. 51, no. 10, pp. 542–548, Oct. 2004.

[29] A. J. Lopez-Martin, J. Ramirez-Angulo, C. Durbha, and R. G. Carcajal, “A CMOS transconductor with multidecade tuning using balanced current scaling in moderate inversion,” IEEE Journal of Solid-State Circuits, vol.40, no.5, pp. 1078-1083, May. 2005.

[30] Y. S. Youn, J. H. Chang, K. J. Koh, Y. J. Lee, H. K. Yu, “A 2GHz 16dBm IIP3 Low Noise Amplifier in 0.25μm CMOS Technology,” in IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, Feb. 2003, pp. 452-453.

[31] C. Fager, J. C. Pedro, N. B. Carvalho, H. Zirath, F. Fortes, and M. J. Rosário,” A Comprehensive Analysis of IMD Behavior in RF CMOS Power Amplifiers,” IEEE Journal of Solid-State Circuits, vol.39, no.1, pp. 24-34, Jan. 2004.

[32] S. H. Tang, K. H. Kim, Y. H. Kim, Y. You, and K. R. Cho, “A Novel CMOS Operational Transconductance Amplifier Based on a Mobility Compensation Technique,” IEEE Trans. Circuits Syst. II, Expr. Briefs, vol. 52, no. 1, pp. 37–42, Jun. 2005.

[33] X. Fan and P. K. Chan, “Analysis and Design of Low-Distortion CMOS Source Followers,” IEEE Trans. Circuits Syst. I, vol. 52, no. 8, pp. 1489–1501, Aug. 2005.

[34] F. Behbahani, T. Weeguan, A. Karimi-Sanjaani, A. Roithmeier, and A. A. Abidi, “A broad-band tunable CMOS channel-select filter for a low-IF wireless receiver,” IEEE J. Solid-State Circuits, vol. 35, no. 4, pp. 476–489, Apr. 2000.

[35] I. S. Han, “A Novel Tunable Transconductance Amplifier Based on Voltage-Controlled Resistance by MOS Transistors,” IEEE Trans. Circuits Syst. II, Expr. Briefs, vol. 53, no. 8, pp. 662–666, Aug. 2006.

[36] F. A. P. Baruqui and A. Petraglia, “Linearly Tunable CMOS OTA With Constant Dynamic Range Using Source-Degenerated Current Mirrors,” IEEE Trans. Circuits Syst. II, Expr. Briefs, vol. 53, no. 9, pp. 797–801, Sep. 2006.

[37] S. Pavan and Y. Tsividis, High frequency continuous time filters in digital CMOS process, Kluwer Academic Publishers, 2000

[38] S. Chatterjee, Y. Tsividis, and P. Kinget , “0.5-V analog circuit techniques and their application in OTA and filter design,” IEEE J. Solid-State Circuits, vol. 40, no. 12, pp. 2373–2387, Dec. 2005.

[39] K. C. Kuo and A. Leuciuc, “A Linear MOS Transconductor Using Source Degeneration and Adaptive Biasing,” IEEE Trans. Circuits Syst. II, vol. 48, no. 10, pp. 937–943, Oct. 2001.

[40] B. Razavi, Design of Analog CMOS Integrated Circuit, New York: McGraw-Hill, 2001.

[41] M. Steyaert, J. Silva-Martinez and W. Sansen, “High-Frequency Saturated CMOS Floating Resistor for Fully-Differential Analogue Signal Processors,” IEE Electronics Letters, pp. 1609-1611, Aug. 1991.

[42] L. P. Huelsman, Active and Passive Analog Filter Design, New York: McGraw-Hill, 1993.

[43] C. C. Hung, K. A. Halonen, M. Ismail, V. Porra and A. Hyogo, “A low-Voltage, Low-Power CMOS Fifth-Order Elliptic GM-C filter for Baseband Mobile, Wireless Communication,” IEEE Trans. Circuits Syst. Video Technol., vol. 7, pp. 584-593, Aug., 1997.

[44] D. Chamla, A. Kaiser, A. Cathelin, and D. Belot, “A Gm–C Low-pass Filter for Zero-IF Mobile Applications With a Very Wide Tuning Range ,“ IEEE J. Solid-State Circuits, vol. 40, no. 7, pp. 1143–1450, Jul. 2005.

[45] G. Bollati, S. Marchese, M. Demicheli, and R. Castello, “An eighth-order CMOS low-pass filter with 30–120 MHz tuning range and programmable boost,” IEEE J. Solid-State Circuits, vol. 36, no. 7, pp. 1056–1066, Jul. 2001.

[46] J. A. De Lima and C. Dualibe, “A Linearly Tunable Low Voltage CMOS Transconductor With Improved Common-Mode Stability and Its Application to gm-C Filters,” IEEE Trans. Circuits Syst. II, vol, 48, no. 7, pp. 649–660, Jul. 2001.
[47] S. Pavan, Y. P. Tsividis, and K. Nagaraj, “Widely programmable high frequency continuous-time filters in digital CMOS technology,” IEEE J. Solid-State Circuits, vol. 35, no. 4, pp. 503–511, Apr. 2000.

[48] N. Rao, V. Balan, and R. Contreras, “A 3-V 10–100 MHz continuous-time seventh-order 0.05 equiripple linear phase filter,” IEEE J. Solid-State Circuits, vol. 34, pp. 1676–1682, Nov. 1999.

[49] R. G. Carvajal, J. Ramirez-Angulo, A. J. Lopez-Martin, A. Torralba, J. A. G. Galan, A. Carlosena, and F. M. Chavero,“The Flipped Voltage Follower: A Useful Cell for Low-Voltage Low-Power Circuit Design,” IEEE Trans. Circuits. Syst. I, Reg. Papers., vol. 52, no. 7, pp. 1276-1291, Jul. 2005.

[50] R. Alini, A. Baschirotto, and R. Castello, “Tunable BiCMOS continuous-time filter for high-frequency applications,” IEEE J. Solid-State Circuits, vol. 27, no. 12, pp. 1905–1915, Dec. 1992.

[51] D. A. Johns and K. Martin, Analog Integrated Circuit Design, New York: John Wiley & Sons, Inc, 1997

[52] B. Fotouhi, “ALL-MOS voltage-to-current convereter,” IEEE J. Solid-State Circuits, vol.36, no. 1, pp. 147-151, Jan. 2001.

[53] The BSIM model, BSIM Research Group at UC Berkeley. Available: http://www-device.eecs.berkeley.edu/~bsim3/bsim4.html

[54] A. Cathelin, L. Fabre, L. Baud, and D. Belot, “A multiple-shape channel selection filter for multimode zero-IF receiver using capacitor over active device implementation,” in Proc. IEEE Eur. Solid-State Circuits Conf., 2002, pp. 651–654.

[55] S. Hori, T. Maeda, H. Yano, N. Matsuno, K. Numata, N. Yoshida, Y. Takahashi, T. Yamase, R. Walkington, and H. Hida, “A widely tunable CMOS Gm-C filter with a negative source degeneration resistor transconductor,” in Proc. IEEE Eur. Solid-State Circuits Conf., 2003, pp. 449-452.

[56] S. Hori, T. Maeda, N. Matsuno, and H. Hida, “Low-power widely tunable Gm-C filter with an adaptive DC-blocking, triode-biased MOSFET transconductor,” in Proc. IEEE Eur. Solid-State Circuits Conf., 2004, pp. 99-102

[57] L. T. Bruton, RC-Active Circuits, Theory and Design, rentice Hall, 1980.

[58] N. Rao, V. Balan, R. Contreras, J. Chen, and Y. Wang, “A 150MHz continuous-time 7th-order 0.05o equiripple linear phase filter,” in Proc. IEEE ISCAS, 1999, pp. 664-667.

[59] Y. Tsividis and J. Voorman, Integrated Continuous-Time Filters: Princeples, Design and Applications, IEEE Press, New York, 1992.

[60] B. Nauta, “A CMOS transconductance-C filter technique for very high frequencies,” IEEE J. Solid-State Circuits, vol. 27, no. 2, pp. 142–153, Feb.1992.

[61] Y. Oowaki, M. Noguchi, S. Takagi, D. Takashima, M. Ono, Y. Matsunaga, K. Sunouchi, H. Kawaguchiya, S. Matsuoka, M. Kamoshida, T. Fuse, S.Watanabe, A. Toriumi, S. Manabe, and A. Hojo, “A sub-0.1 μm circuit design with substrate-over-biasing,” in IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, 1998, pp. 88–89.

[62] M. Miyazaki, G. Ono, and K. Ishibash, “A 1.2-GIPS/W microprocessor using speed-adaptive threshold-voltage CMOS with forward bias,” IEEE J. Solid-State Circuits, vol. 37, no. 2, pp. 142–153, Feb.2002.

[63] J. Silva-Martínez, Joseph Adut, Jose Miguel Rocha-Perez, Moises Robinson, and Shahriar Rokhsaz, “A 60mW, 200MHz continuous-time seventh-order linear phase filter with on-chip automatic tuning system,” IEEE J. Solid-State Circuits, vol. 38, no. 2, pp.216-225, Feb. 2003.

[64] P. Pandey, J. Silva-Martinez, and X. Liu, “A CMOS 140-mW fourth-order continuous-time low-pass filter stabilized with a Class AB common-mode feedback operating at 550 MHz,” IEEE Trans. Circuits Syst. I, Reg. Papers., vol. 53, no. 4, pp.811-820, Apr. 2006.

[65] S. Dosho, T. Morie, and H. Fujiyama, “A 200Mhz seventh-order equiripple continuous-time filter by design of nonlinearity suppression in 0.25-μm CMOS process,” IEEE J. Solid-State Circuits, no. 5, pp. 559–565, May 2002.

[66] R. Kolm and H. Zimmermann, “A 3rd-Order 235MHz Low-Pass gmC-Filter in 120nm CMOS,” in Proc. IEEE Eur. Solid-State Circuits Conf., 2006, pp. 215–218.


[67] C. C. Lee and T. Y. Yang, “A Tuning Technique for Bandwidth of Programmable Gain Filter,” in IEEE Asia Solid-State Circuits Conf., 2006, pp. 175-178.

[68] V. Sarri, M. Kaltiokallio, S. Lindfors, J. Ryynänen, K. Halonen , “A 1.2V 240MHz CMOS Continuous-Time Low-Pass Filter for a UWB Radio Receiver,” in IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, 2007, pp. 122–123.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top