跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.54) 您好!臺灣時間:2026/01/10 14:37
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:周俊廷
研究生(外文):Chou, Chun-Ting
論文名稱:應用模糊網絡層級分析法於發展肝臟移植手術術後病患風險指標
論文名稱(外文):Applying Fuzzy Analytic Network Process to Develop Patients Risk Index after Liver Transplant Surgery
指導教授:許尚華許尚華引用關係
指導教授(外文):Hsu, Shang-Hwa
學位類別:碩士
校院名稱:國立交通大學
系所名稱:工業工程與管理系所
學門:工程學門
學類:工業工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:103
語文別:中文
論文頁數:66
中文關鍵詞:模糊理論網絡層級分析法肝臟移植風險指標
外文關鍵詞:FuzzyAnalytic Network ProcessLiver TransplantRisk Index
相關次數:
  • 被引用被引用:2
  • 點閱點閱:165
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
肝臟移植手術術後的病患狀態極不穩定,隨時都可能發生異常的生理變化,為了維持病患安全,需於加護病房中密切監控其狀態。在當前的肝臟移植加護病房中,對肝臟移植手術術後病患肝臟狀態之判讀,以肝臟超音波最為準確,儘管肝臟超音波能有效反映出病患肝臟功能的狀態,但肝臟超音波的檢驗不易進行,在儀器和人力因素的雙重影響下,使超音波檢驗具有較長時間間隔的限制,為改善病患監控之效率,需使用能更頻繁檢驗病患狀態之指標。
當前肝臟移植加護病房已使用多種常規檢驗參數,作為評估病患狀態的參考指標,但這些資訊是大量且分散的,無法有效進行判讀,為解決資訊處理的問題, 本研究納入模糊理論(Fuzzy Theory)的概念,根據專家之經驗,分別給予各項參數不同的異常度歸屬函數(Membership Function),將參數的數值量化,以發展判讀病患肝臟狀態異常度的一致性指標。此外為解決參數間複雜的交互作用並評估各參數對肝臟狀態的重要性,使用網絡層級分析法(Analytic Network Process, ANP)探討各參數間的相依性和確認各參數的重要性,結合參數相依性和參數權重的評比,建立完善的肝臟狀態風險指標系統,該系統將與肝臟超音波檢驗結果相比較,以驗證肝臟異常度風險指標的準確度。

Liver echo is the most effective way to measure the patient’s liver function especially after the liver transplant surgery. Even though liver echo is the direct measurement, but because of the constraints of the equipment, patients need to transfer to the examination room to do the liver echo, which increase more risk in patients’ safety, and also the difference in physician’s experience will affect the results. So this study provides another way to measure the liver function by using the regular examining parameters.
There are many regular examining parameters to evaluate the patient’s liver function, but they are scattered around in different examination sheets. This study uses the concept of Fuzzy Theory and Analytic Network Process to figure out the importance and relations among these parameters based on the physicians’ experiences. Therefore, we can generate an ideal risk index which can express the state of the liver function. Then we verify the accuracy of this risk index by comparing it to the liver echo result.

目錄
摘要 I
ABSTRACT II
誌謝 III
目錄 IV
圖目錄 VI
表目錄 VII
第一章、緒論 1
1.1研究背景 1
1.2研究動機與目的 4
1.3預期貢獻 4
第二章、文獻探討 5
2.1模糊理論(FUZZY THEORY) 5
2.1.1模糊集合(Fuzzy Set) 5
2.1.2歸屬函數(Membership Function) 7
2.1.3模糊法則推論 8
2.1.4解模糊化 8
2.2模糊綜合決策(FUZZY SYNTHETIC DECISION) 9
2.3層級分析法(AHP)與網絡層級分析法(ANP) 12
2.3.1層級分析法(Analytic Hierarchy Process, AHP)之概念 12
2.3.2網絡層級分析法(Analytic Network Process, ANP)之概念 13
2.3.3網絡層級分析法之基本假設 14
2.3.4網絡層級分析法之步驟 15
2.4模糊網絡層級分析法(FANP)應用文獻 17
2.5電子加護病房(E-ICU) 18
2.5.1電子加護病房發展歷史 18
2.5.2電子加護病房的運作基礎 18
2.5.3電子加護病房的功能類型 19
2.5.4電子加護病房使用設備和系統 20
第三章、研究方法 21
3.1檢驗參數選擇及分類 22
3.2歸屬函數設計 23
3.2.1檢驗參數歸屬函數 23
3.2.2超音波歸屬函數 28
3.3網絡層級分析法 29
3.3.1擷取醫師專業經驗 29
3.3.2因素權重 30
3.3.3因素相依性權重 32
3.3.4參數總體權重計算 48
第四章、分析結果 56
4.1實際資料運算 56
4.1.1藉由歸屬函數計算各項參數異常歸屬度 56
4.1.2計算參數影響超音波異常度的模糊關係矩陣 57
4.1.3模糊綜合決策 58
4.1.4肝臟超音波異常度推論 59
4.2推論結果分析 60
4.2.1肝臟超音波異常度評分 60
4.2.2準確度量測 61
第五章、結論與討論 62
5.1研究結論 62
5.2研究建議 63
參考文獻 64

參考文獻
1. Armstrong, J. S., & Collopy, F. (1992). “Error measures for generalizing about forecasting methods: Empirical comparisons.” International journal of forecasting, 8(1), 69-80.
2. Berenson, R. A., Grossman, J. M., & November, E. A. (2009). “Does telemonitoring of patients—the eICU—improve intensive care?” Health Affairs, 28(5), 937-947.
3. Breslow, M. J. (2007). “Remote ICU care programs: current status.” Journal of critical care, 22(1), 66-76.
4. Charbonnier, S., & Portet, F. (2012). “A self-tuning adaptive trend extraction method for process monitoring and diagnosis.” Journal of Process Control, 22(6), 1127-1138.
5. Cheng, J., & Yang, Z. Y. (1998). “Fuzzy synthetic decision-making system in ferrographic analysis”. Wear, 222(1), 1-20.
6. Cheng, E. W., & Li, H. (2004). “Contractor selection using the analytic network process.” Construction Management and Economics, 22(10), 1021-1032.
7. Coye, M. J. (2005). The E-ICU and new business models in health care.
8. Dağdeviren, M., Yüksel, İ., & Kurt, M. (2008). “A fuzzy analytic network process (ANP) model to identify faulty behavior risk (FBR) in work system.” Safety Science, 46(5), 771-783.
9. Dombi, J. (1990). “Membership function as an evaluation.” Fuzzy sets and systems, 35(1), 1-21.
10. Guneri, A. F., Cengiz, M., & Seker, S. (2009). “A fuzzy ANP approach to shipyard location selection.” Expert Systems with Applications, 36(4), 7992-7999.
11. Hoffman, T. (2007). “Saving Lives Via Video.” Computerworld, 41(26), 28.
12. Hospitals & Health Networks. (2004) “The benefits of the e-ICU.” H&HN: Hospitals & Health Networks, 78(4), 51.
13. Khunlertkit, A., & Carayon, P. (2013). “Contributions of tele–intensive care unit (Tele-ICU) technology to quality of care and patient safety.” Journal of critical care, 28(3), 315-326.
14. Koch, S. H., Weir, C., Westenskow, D., Gondan, M., Agutter, J., Haar, M., Liu, D., Görges, M., & Staggers, N. (2013). “Evaluation of the effect of information integration in displays for ICU nurses on situation awareness and task completion time: A prospective randomized controlled study.” International journal of medical informatics, 82(8), 665-675.
15. Lee, C. C. (1990). “Fuzzy logic in control systems: fuzzy logic controller. II.” Systems, Man and Cybernetics, IEEE Transactions on, 20(2), 419-435.
16. Liu, K. F., & Lai, J. H. (2009). “Decision-support for environmental impact assessment: A hybrid approach using fuzzy logic and fuzzy analytic network process.” Expert Systems with Applications, 36(3), 5119-5136.
17. Liu, H. T., & Wang, C. H. (2010). “An advanced quality function deployment model using fuzzy analytic network process.” Applied Mathematical Modelling, 34(11), 3333-3351.
18. Lilly, C. M., & Thomas, E. J. (2010). “Tele-ICU: experience to date.” Journal of Intensive Care Medicine, 25(1), 16-22.
19. Mahmoud, E. (1984). “Accuracy in forecasting: A survey.” Journal of Forecasting, 3(2), 139-159.
20. Mikhailov, L., & Singh Madan, G. (2003). “Fuzzy analytic network process and its application to the development of decision support systems.” Systems, Man, and Cybernetics, Part C: Applications and Reviews, IEEE Transactions on, 33(1), 33-41.
21. Nomura, H., Hayashi, I., & Wakami, N. (1992, March). “A learning method of fuzzy inference rules by descent method.” In Fuzzy Systems, 1992., IEEE International Conference on, 203-210.
22. Nouira, K., & Trabelsi, A. (2012). “Intelligent monitoring system for intensive care units.” Journal of medical systems, 36(4), 2309-2318.
23. Razmi, J., Rafiei, H., & Hashemi, M. (2009). “Designing a decision support system to evaluate and select suppliers using fuzzy analytic network process.” Computers & Industrial Engineering, 57(4), 1282-1290.
24. Saaty, R. W. (1987). “The analytic hierarchy process—what it is and how it is used.” Mathematical Modelling, 9(3), 161-176.
25. Saaty, T. L. (1990). “How to make a decision: the analytic hierarchy process.” European journal of operational research, 48(1), 9-26.
26. Saaty, T. L. (1994). “How to make a decision: the analytic hierarchy process.” Interfaces, 24(6), 19-43.
27. Saaty, T. L. (1996). “Decision making with dependence and feedback: The analytic network process.”
28. Saaty, T. L. (2001). “Analytic network process.” In Encyclopedia of Operations Research and Management Science, 28-35.
29. Saaty, T. L. (2008). “Decision making with the analytic hierarchy process.” International journal of services sciences, 1(1), 83-98.
30. Smith, K., & Hancock, P. A. (1995). “Situation awareness is adaptive, externally directed consciousness.” Human Factors: The Journal of the Human Factors and Ergonomics Society, 37(1), 137-148.
31. Takagi, T., & Sugeno, M. (1985). “Fuzzy identification of systems and its applications to modeling and control.” Systems, Man and Cybernetics, IEEE Transactions on, 1, 116-132.
32. Webber, D. (2007). “From a Distance: Saving Lives Through Remote Care.” Health Management Technology, 28(3), 26-29.
33. Wilkins, D. E., Lee, T. J., & Berry, P. (2003). “Interactive execution monitoring of agent teams.” Journal of Artificial Intelligence Research, 18, 217-261.
34. Yüksel, İ., & Dağdeviren, M. (2010). “Using the fuzzy analytic network process (ANP) for Balanced Scorecard (BSC): A case study for a manufacturing firm.” Expert Systems with Applications, 37(2), 1270-1278.
35. Zadeh, L. A. (1965). “Fuzzy sets.” Information and control, 8(3), 338-353.
36. Zadeh, L. A. (1968). “Probability measures of fuzzy events.” Journal of mathematical analysis and applications, 23(2), 421-427.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top