跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.17) 您好!臺灣時間:2025/09/03 09:18
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林旭翎
研究生(外文):Hsu-Ling Lin
論文名稱:利用多重輸出輸入模式識別結構系統特性
論文名稱(外文):Identification for Characters of Structural System ─using Multi-input and Multi-output Models
指導教授:曾一平曾一平引用關係
指導教授(外文):Yi-Ping Tseng
學位類別:碩士
校院名稱:淡江大學
系所名稱:土木工程學系
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2000
畢業學年度:88
語文別:中文
論文頁數:175
中文關鍵詞:多重輸入與多重輸出地震反應系統識別
外文關鍵詞:multiple input/outputearthquake responsessystem identification
相關次數:
  • 被引用被引用:1
  • 點閱點閱:247
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
雖然,電腦蓬勃發展而大幅提升了工程師的分析和設計能力,但是工程師仍然完全受限於處理龐大且複雜的系統行為。如土木工程之結構。根據量測所得之反應資料,藉由正確分析系統之模型可識別出系統之特性。此外,識別所得的資料,可用來評估系統之損害。
在本研究中,分別以時間序列模型─ARX、ARMAX及狀態空間模式來描述輸入與輸出間之關係。當量測反應資料含有雜訊時,以傳統最小平方法及迭代工具變數法配合ARX模型皆無法準確地識別系統之動態特性。為了改進前述之問題,提出一平穩估算程序。平穩估算程序配合ARX與ARMAX模型,可有效求解AR部分之係數矩陣。再藉由Ibrahim時間域識別法之觀念估算結構之動態特性。本文亦應用現代控制學所發展之次空間法於土木工程,並利用狀態空間模式識別結構之動態特性。
藉由兩組數值模擬來驗證本文所提出的方法。其一是六層樓剪力建築物受一地震輸入;其二是三跨連續橋樑受多支承運動。在這些數值模擬中,並探討雜訊、量測自由度之數目與不完整之量測輸入源對識別動態特性之影響。最後,將以研究所提出之方法來識別三種不同形式之五層樓鋼構於振動台試驗的動態特性。
In this research, time series models such as the ARX and ARMAX models and state-space model were applied to describe the relationship between input and output. The traditional least-square approach and iterative instrumental variable approach do not provide accurate results of dynamic characteristics of structural system from the ARX model when the measured responses are contaminated by noises. A stationary approach was developed to remedy such problem. This procedure cooperates with the ARX and ARMAX models to effectively evaluate the coefficient matrices of the AR part, then estimates the structural dynamic characteristics by adopting the concept behind the Ibrahim’s time domain identification technique. A subspace method developed by researchers in control field was also adopted and modified to estimate the structural dynamic characteristics by using state space model.
To verify the capacity of the proposed procedures, two groups of numerical simulations were made. One considered a six-floor shear building subjected to base excitation generated by a real earthquake record. The other considered a three-span continuous bridge subjected to multiple support motion. In these case studies, the effects of noise, number of measured degrees of freedom, and incompleteness of input on identifying the dynamic characteristics were investigated. Finally, the proposed procedures were applied to identify the dynamic characteristics of three five-story steel frames from the responses of shaking table tests.

第一章 緒論 1
1.1 前言 1
1.2 研究動機與內容 1
1.3 文獻回顧 3
第二章 多變數ARX模式系統識別 6
2.1 ARX數學模式 6
2.2 ARX模式與結構系統運動方程式之對應 7
2.2.1 單自由度系統 7
2.2.2 多自由度系統 8
2.3 建模 10
2.3.1 傳統最小平方差法 10
2.3.2 工具變數法(Instrumental Variables Method) 11
2.3.3 平穩最小平方差法 14
2.4 結構系統動態特性之估算 16
2.5 數值模擬 19
2.5.1 傳統最小平方差法之識別結果 20
2.5.2 工具變數法之識別結果 21
2.5.3 平穩最小平方差法之識別結果 22
2.5.4 雜訊之影響 22
2.5.5 量測自由度之影響 23
第三章 多變數ARMAX模式系統識別 43
3.1 ARMAX數學模式 43
3.2 ARMAX模式與結構系統運動方程式之對應 44
3.3 建模 45
3.3.1 迭代法 45
3.3.2 兩階段最小平方差法 47
3.3.3 平穩最小平方差法 51
3.4 結構系統動態特性之估算 53
3.5 數值模擬 53
3.5.1 迭代法之識別結果 54
3.5.2 兩階段最小平方差法之識別結果 54
3.5.3 識別動態特性之平穩最小平方差法 55
3.5.4 雜訊之影響 55
3.5.5 量測自由度之影響 56
第四章 狀態空間模式 67
4.1 狀態空間數學模式 67
4.2 狀態空間模式與結構系統運動方程式之對應 68
4.3 狀態空間模式與時間序列模式之關係 71
4.4 建模 75
4.5 結構系統特性之估算 86
4.6 數值模擬 89
4.6.1 自由度縮減之影響 89
4.6.2 雜訊之影響 90
第五章 實測資料分析 94
5.1 待測結構物 94
5.2 輸入之地震力 95
5.3 識別動態特性 95
5.3.1 識別同一構架不同地震形式之動態特性 96
5.3.2 不同構架之識別結果 97
第六章 多重輸入╱多重輸出數值模擬與識別 130
6.1 橋樑受多支承運動反應之數值模擬 130
6.1.1 多支承運動反應之解 130
6.1.1.1 擬靜力反應解 131
6.1.1.2 動力反應解 132
6.2 多支承輸入地震歷時之模擬 135
6.3 識別結果 139
第七章 結論及建議 163

1. Ljung, L.,"System Identification: Theory for the user", Prentice-Hall,Inc.,Englewood cliffs,New Jersey,1987.
2. Bendat, J.S. and Piersol, A.G.,”Engineering Application of
Correlation and Spectral Analysis,” John Wiley & Sons, Inc,New York.
3. Ljung, L. and Stoica, T.,”Theory and Practice of Recursive Identification,” Asco.Trade Typesetting Ltd.Hong Kong. 1983.
4. Young, P.,”Recursive estimation and Time-series Analysis:An Introduction,” Springer-Verlag,Berlin,Germany,1984.
5. Pandit, S.M. and Wu, S.M.,”Time Series and System Analysis with Application,” John Wiley,New York,1983.
6. Caravani, P., Waston, M.L. and Thomson, T.W.,”Recursive least-square time domain identification of structure parameter,” Journal of Applied Mechanics,44,pp.135-140,1997.
7. Spliid, H.,”A Fast Estimation Method for the Vector Autoregressive Moving Average Modal With Exogenous Variables,” Journal of the American Statistical Association, 78,843-849,1983
8. Park, B.H. and Kin, K.J.,“Vector ARMAX Modeling Approach In Multi-Input Modal Analysis,” Mechanical System and Signal Processing 3(4),373-387,1989.
9. Young, P.C.,”An instrumental variable method for real time identification of a noisy process,” Automatica,6,pp.271-287,1970.
10. Kashyap, R.L.,”Maximum likelihood identification of stochastic linear systems,” IEEE Transaction on Automatic Control,15(1),pp.25-34,1970.
11. Kashyap, R.L. and Nasburg, R.E.,”Parameter estimation in multivariate stochastic difference equations,” IEEE Transaction on Automatica Control,19,pp.784-797,1974.
12. Kalman, R.E. and Bucy, R.S.,”New results in linear filtering and prediction theory,” ASME.Journal of Basic Engineering, 83,pp.98-108,1971.
13. Kozin, F. and Natke, H.G.,”System identification techniques,” Structure Safety,3(3-4),pp.263-316,1986.
14. Yong, L.P. and Mickleborough, N.C.,”Modal identification of a vibrating structure in the time domain,” Computers and Structures,3295,pp.1105-1115,1989.
15. Safak, E. and Celebi, M.,”Seismic response of Transamerica building, Π:system identification,” Journal of Structural Engineering,ASCE,117,pp.2405-2425,1991.
16. Shinizuka, M. and Ghanem, R.,”Structural system identification Π:experimental verification,” Journal of Engineering Mechanics,ASCE,121(2),pp.265-273,1995.
17. Loh, C.H. and Wu, T.S.,”Identification of Fei-Tsui arch dam from both ambient and seismic response data,” Soil Dynamics and Earthquake Engineering,15,pp.465-483,1996.
18. Saito, T. and Yokota, H.,”Evaluation of dynamics characteristics of high-rise buildings using system identification techniques,” Journal of Wind Engineering and Industrial Aerodynamics,59,pp.299-307,1996.
19. Yun, C.B. and Shinozuka, M.,”Program LINEARID for identification of linear structural dynamic systems,” technical report NCEER-90-0011,National Center for Earthquake Engineering Research,Buffalo,N.Y.,1990.
20. Ghanem, R. and Shinozuka, M.,”Structural-system identification Ι:theory,” Journal of Engineering Mechanics, ASCE,121(2),pp.255-264,1995.
21. Saridis, G.N.,”Comparison of six on-line identification algorithm,” Automatica,10,pp.69-79,1974.
22. Dickinson, B., Morf, M. and Kailath, T.,”A minimal realization algorithm for matrix sequences,” IEEE Transactions on Automatic Control, AC-19,(1),pp.31-38,1974.
23. Dickinson, B., Morf, M. and Kailath, T.,”Canonical Matrix fraction and state space descriptions for deterministic and stochastic linear systems.” IEEE Transactions on Automatic Control,AC-19,pp.656-667,1974.
24. Ho, B.L. and Kalman, R.E.,”Efficient construction of linear state variable models from input/output functions,” Regelungstechnik,14,pp.545-548,1966.
25. Kung, S.Y.,”A new identification method and model reduction algorithm via singular value decomposition,” 12th Asilomar Conf.on Circuits,Systems and Comp.,pp.705-714,Asilomar, CA,1978.
26. Ljung, L.,”A Simple Start-Up Procedure for Canonical Form State Space Identification,Based on Subspace Approximation,” 30th IEEE Conference on Decision and Control,Brighton,UK,pp.1333-1336,1991.
27. Moore, B.C.,”Principal component analysis in linear system: Controllability,Observability and Model Reduction,” IEEE Transactions on Automatic Control,Vol.AC26,(1),pp.17-32,1981.
28. Mullis, C.T. and Roberts, R.A.,”Synthesis of minimum round-off noise fixed point digital filters,” IEEE Transactions on Circuits and Systems,CAS-23,pp.555-562,1976.
29. Silverman, L.,”Realization of linear dynamical systems,” IEEE Transactions on Automatic Control,AC-16,pp.554-567,1971.
30. Zeiger, H. and McEwen, A.,”Approximate linear realizations of given dimension via Ho’s algorithm,” IEEE Transactions on Automatic Contro,19,pp.153,1974.
31. Bhaska Rao, D.V. and Arun, K.S.,”Model based processing of signals: A state space approach,” Proc.IEEE,80, pp.283-309,Feb,1992.
32. Cedervall, M. and Stoica, P.,”System Identification from Noisy Measurements by Using Instrumental Variables and Subspace Fitting,” Circuits System Signal Process,.15,(2).pp.275-290,1996.
33. Ibrahim, S.R. and E.C. Milkulcik,”A Time Domain Modal Vibration Test Technique,” Shock and Vibration Bulletin,43(4),21-37,1973.
34. Pappa, R.S. and Ibrahim, S.R.,”A Parametric Study of the Ibrahim Time Domain Modal Identification Algorithm,” Shock and Vibration Bulletin,51(3),43-72,1981.
35. Ibrahim, S.R. and Pappa, R.S.,”Large Modal Survey Testing Using the Ibrahim Time Domain Identify Technique,” The ALAA Journal of Spacecraft and Rockets,19(5),459-465,1982.
36. 黃炯憲,「微動量測分析工具探討(二)─時間序列法」,國家地震工程研究中心NCREE-99-018,民國88年8月。
37. Young, P.C.,”An Instrumental Variable Method for Real-time Identification of a Noisy Process,” Automatica,VOL.6,pp. 271-287,1970.
38. 林聰悟、林佳惠,「數值方法與程式」,著者自行出版。1997。
39. Golub, G.H. and Van Loan, C.F.,”Matrix Computations,” The Johns Hopkins University Press,Baltimore and London,1989.
40. Park, B.H. and Kin, K.J.,”Vector ARMAX Modeling Approach In Multi-Input Modal Analysis,” Mechanical System and Signal Processing 3(4),373-387,1989.
41. Oversche, P.V. e and Moor, B.D.,”Subspace Identification for linear systems-Theory,Implementation,Applications,” Kluwer Academic publisher,1996.
42. Viberg, M., Wahlberg, B. and Ottersten, B.,”Analysis of state space system identification methods based on instrumental variables and subspace fitting,” Automatica, 33(9),pp. 1603-1616,1997
43. Jansson, M. and Walhlberg, B.,”4SID Linear Regressive,” In Proc.33rd CDC,Orlando,FL,pp.2858-2863,1994.
44. Verhaegen, M.,”Identification of the deterministic part of MIMO state space models given in innovations form from input-output data,” Automatica,Special Issue on Statist. Signal Process.Control,30,61-74,1994
45. Viberg, M.,”On subspace-based methods for the identification of linear time-invariant systems,” Automatica,1995.
46. 王松桂、楊振海,「廣義逆矩陣及其反應用」,北京工業大學出版社。1996。
47. 葉士青、鄭橙標、羅俊雄,「五層樓縮尺鋼結構振動台試驗分析報告」,國家地震工程研究中心NCREE-99-002,民國88年4月。
48. Lieven, N.A.J. and Ewins, D.J.,”Spatial Correlation of Mode Shapes ,the Coordinate Modal Assurance Criterion(COMAC),” Proc.6th international Modal.Analysis conference,pp.690-695,1988.
49. 蔡益超、周光武,「橋樑多支承動力分析與地表運動之模擬」,西藏橋動力及靜力特性之監測及分析,期末報告,內政部營建署。2000。
50. Clough, R.W. and Penzien, J.,”Dynamics of Structure,” McGraw-Hill,Inc.New York,1993.
51. Hao, H., Oliveira, C.S. and Penzien, J. ,”Multiple-station ground motion processing and simulation based on SMART-1 array data,” Nuclear Engineering and Design,111,pp.293-310,1985.
52. Hao, H.,”Response of multiply supported rigid plate to spatially correlated seismic excitations,” Earthquake Engineering and Structural Dynamics,20,pp.821-838,1991.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 10.蔡瑋:<從國際關係理論探討解決兩岸困境之道>,《中國大陸研究》(台北),第41卷第6期(1998),頁37-65。
2. 9.朱景鵬:<區域主義、區域整合與兩岸整合問題之探討>,《中國大陸研究》(台北),第42卷第8期(1999),頁71-93。
3. 8.蔡宏明:<通航對兩岸經濟整合與運輸合作的影響>,《理論與政策》(台北),第41期(1996),頁58-79。
4. 2.劉復國:<綜合性安全與國家安全亞太安全概念適用性之檢討>,《問題與研究》(台北),第38卷第2期(1999年2月),頁21-36。
5. 1.李瓊莉:<經濟安全概念在亞太地區的發展>,《問題與研究》(台北),第38卷第2期(1999年2月),頁39-53。
6. 11.邊裕淵:<國際經濟區域化與兩岸經濟關係>,《理論與政策》(台北),第十卷第一期(1995),頁60-71。
7. 12.徐博生:<中華民國國家安全戰略>,《理論與政策》(台北),第十卷第一期(1995),頁3-25。
8. 15.許振明:<大陸投資政策及兩岸資金往來之合理規範>,《國家政策論壇》,(台北),第一卷第二期(2001),頁36-45。
9. 16.嚴宗大:<兩岸金融往來的現況、問題與展望>,《中央銀行季刊》,第17卷第4 期(1995),頁54-74。
10. 18.劉凱平:<中資來台的因應之道>,《中國事務》(台北),第三期,(2000),頁99-104。
11. 20.趙文衡:<大陸加入WTO後之投資法規修訂對台商投資的影響>,《理論與政策》,(台北)第14卷第4期(2000年12月)。